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Abstract 

How much discretion should local financial regulators in a banking union have in 
accommodating local credit demand? I analyze this question in an economy where local 
regulators privately observe expected output from high lending. They do not fully 
internalize default costs from high lending since deposit insurance cannot be priced 
fairly. Still, output net of default costs across the banking union is highest when local 
regulators are rewarded rather than punished. Regulators with lower current lending 
receive more discretion to allow higher lending in the future, but regulators with higher 
current lending may not experience any limit to their discretion. 

 

Bank topics: Credit and credit aggregates; Financial stability; Financial systems 
regulation and policies; Regional economic developments  

JEL codes: E44; G28; H7 

 

Résumé 

Quelle latitude les autorités prudentielles nationales devraient avoir dans une union 
bancaire pour répondre à la demande de crédit sur leur territoire? Pour analyser cette 
question, nous utilisons un modèle dans lequel les autorités prudentielles nationales sont 
seules en mesure d’observer le rendement attendu de la forte activité des prêteurs. 
Puisque l’assurance dépôt ne peut être tarifée de façon équitable, les autorités ne 
supportent pas l’intégralité des coûts de défaillance associés à la forte activité des 
prêteurs. Pour autant, le rendement net obtenu au sein de l’union bancaire, déduction faite 
des coûts de défaillance, est au plus haut quand l’autorité supranationale tend davantage à 
récompenser les autorités prudentielles qu’à les pénaliser. Les autorités prudentielles qui 
réduisent l’activité des prêteurs se voient donner plus de latitude afin de favoriser une 
hausse des volumes du crédit. Dans les territoires où l’activité des prêteurs s’accroît, les 
autorités prudentielles pourraient toutefois ne pas être soumises à des restrictions dans 
l’exercice de leur discrétion. 

Sujets : Crédit et agrégats du crédit; Stabilité financière; Réglementation et politiques 
relatives au système financier; Évolution économique régionale  

Codes JEL : E44; G28; H7 

  
 



Non-Technical Summary

Should local policy makers have discretion to accommodate local credit demand? I ad-

dress this question in the context of an economy in which the cost of defaults is shared

via a central deposit insurance fund. A moral hazard problem arises since local financial

regulators in such a banking union may have incentives to overstate the social value of

supporting local lending when the cost of defaults is being shared. This paper shows

how coordinating lending across a banking union can help its members to internalize

more of the costs they impose on a central deposit insurance fund. Specifically, while

local financial regulators do not mind free-riding on others, they have concerns about

free-riding by other local regulators. The paper then analyzes the trade-off between

tightening lending coordination across the banking union and lowering lending discre-

tion of local regulators that experienced greater defaults in the past. This trade-off has

implications, for example, for whether a local financial regulator that has overseen a

local lending boom should be allowed to rely on the deposit insurance fund to resolve

a subsequent local financial crisis.

It is shown that optimal central supervision emphasizes rewards over punishments

when providing incentives to local regulators. On the one hand, a local regulator that

accommodated local credit demand to a lesser degree becomes a “deposit insurance

fund creditor” and always enjoys higher discretion to accommodate in the future. On

the other hand, a local regulator that accommodated local credit demand to a greater

degree becomes a “deposit insurance fund debtor” and may not face a decrease in its

discretion in the future at all. Instead, a debtor regulator would face retaliatory accom-

modation by the creditor. It is shown that retaliatory accommodation aligns incentives

in a way similar to local fiscal backstops but does not put any demands on local fiscal

capacity.
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1 Introduction

The Italian financial crisis has been more persistent than the 2007-2009 US financial crisis

in part due to European Union restrictions on bailouts. In general, should a financial

regulator that oversees a high volume of borrower defaults face reduced discretion to

support lending in the future? I address this question in the context of a banking union

in which the cost of defaults is shared via a deposit insurance fund. In particular, local

financial regulators in a banking union may have incentives to overstate the social value

of supporting local lending when the cost of defaults is being shared.1 A local financial

regulator can support local lending by, for example, not leaning against a lending boom

or by regulatory forbearance and bailouts during a financial crisis.2

In this paper, I study how coordinating lending across a banking union can help its

members to internalize more of the costs they impose on a central deposit insurance

fund. I analyze the trade-off between adjusting lending coordination across the banking

union and lowering lending discretion of members that experienced greater defaults

in the past. This trade-off has implications, for example, for whether a banking union

member that experienced a local lending boom should be allowed to rely on the deposit

insurance fund to resolve a subsequent local financial crisis.

I build a model of a banking union in which bank lending to firms is funded with

1Such incentive problems are being discussed in the context of plans to create a banking union in the
European Union (ASC, 2012; Hellwig, 2014). In the case of the United States, Agarwal, Lucca, Seru, and
Trebbi (2014) find that state regulators enjoy some discretion in affecting local lending, while the cost of
state regulatory leniency is partially borne by the US federal deposit insurance fund.

2During the US mortgage boom, regulators allowed lower lending standards in the face of strong
demand by borrowers (Dell’Ariccia et al., 2012). During the 2007-2009 US financial crisis, some banks
enjoyed regulatory forbearance (Huizinga and Laeven, 2012) as well as extended coverage of the deposit
insurance scheme (Demirgüç-Kunt et al., 2015), possibly supporting lending by reducing the pressure on
those banks to reduce the size of their balance sheets. Schularick and Taylor (2012) find that financial
crises are more likely when preceded by lending booms. However, not all lending booms end in a finan-
cial crisis (Gorton and Ordoñez, 2016) and it is difficult to predict which lending booms will (Reinhart
and Rogoff, 2009). My analysis abstracts from economic links between crisis and non-crisis times and,
instead, focuses on the incentives of local regulators to excessively support local lending by free-riding
on the deposit insurance fund in either episode.
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insured deposits. There are two types of firms in each region of the banking union. I

assume that deposit insurance can be priced to be actuarially fair in the case of deposits

that fund lending to firms with verifiable cash flows. I also assume that such firms are

mobile across the banking union such that deposits that fund loans to them carry the

same insurance fund contribution in every region of the banking union. Local financial

regulators can choose to allow local lending to firms with non-verifiable cash flows, or

“leniency.” The price of insurance of deposits that fund loans to this type of firm is

assumed to be lower than actuarially fair. As a result, local leniency imposes a net cost

on the economy-wide deposit insurance fund and creates a “free-riding” motive.

I assume that local output gains from local leniency depend on the stochastic state

of the local economy that is privately observed by the respective local regulator. This

informational asymmetry creates a tension between the objective of allowing leniency

wherever it leads to sufficient output gains and the free-riding motive. However, while

local financial regulators do not mind free-riding on others, they have concerns about

free-riding by other local regulators. I explore how such concerns can be used to relieve

some of the tensions created by asymmetric information.

I show that optimal supervision emphasizes rewards over punishments when pro-

viding incentives to local regulators. On the one hand, a local regulator exercising

relatively less leniency becomes a “deposit insurance fund creditor” and always enjoys

higher discretion in exercising leniency in the future. On the other hand, a local regu-

lator that exercises relatively more leniency becomes a “deposit insurance fund debtor”

and may not face a decrease in its discretion in the future at all.

Optimal supervision finds it costly to restrict discretion of a debtor over time and

instead tightens lending coordination across the banking union by introducing state-

contingent excessive creditor leniency. Specifically, when a debtor (again) reports a

relatively higher need for local leniency, then, and only then, is the creditor allowed to
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increase leniency up to the point where borrowers with negative present value projects

are funded in the creditor region. Such excessive creditor leniency is an indirect “side

payment,” via the deposit insurance fund, from the debtor to the creditor. This payment

plays the role of exactly offsetting the effect of higher creditor discretion on both debtor

and creditor incentives to report local economic conditions. As a result, there is no

further need to restrict discretion of the debtor region.

Because of the emphasis of rewards over punishments, expected leniency across

local regulators may increase in the future whenever actual leniency differed across

the banking union in the past. A different regulatory stance across regions may thus

lead to larger expected losses for the central deposit insurance fund in the future. This

result holds even though local economic conditions are assumed to be independent over

time and across regions. In that sense, disagreements over policy may lower financial

stability in the future in the banking union.

The trade-off faced by optimal supervision is between restricting future discretion

of local regulators that are relatively more lenient today and allowing future state-

contingent excessive leniency of regulators that are relatively less lenient today. I show

that the latter is preferred as long as the average output gain from leniency is not too

low. I assume this condition holds in my two-period benchmark model. I also ex-

tend my model to an infinite horizon where the condition typically does not hold. The

trade-off becomes more gradual with an infinite horizon but the qualitative insights are

similar. It can be optimal to reduce debtor discretion somewhat and, at the same time,

also to allow state-contingent excessive leniency of creditors. The emphasis on rewards

over punishments is still present, however, as creditor discretion increases quickly while

debtor discretion decreases slowly over time.

I also consider a direct side-payment technology in the form of local fiscal backstops.

For example, one could think about a costly technology that makes it feasible to tax
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local firms with non-verifiable cash flows. I show that the indirect technology, which

works via the deposit insurance fund, dominates the direct technology when local fiscal

capacity is low; i.e., whenever local taxation is more distorting than some threshold.

The extension thus shows that, unless fiscal capacity is high, optimal supervision has

no need for fiscal backstops.

1.1 Related literature

Carletti, Dell’Ariccia, and Marquez (2015) also consider supervision of biased local fi-

nancial regulators. Their analysis focuses on moral hazard of local regulators with

respect to the collection of information, while I assume that local regulators possess a

given amount of private information. They uncover a novel channel that breaks the

monotonically increasing relationship between central supervisor regulatory standards

and bank lending standards. Another difference from my paper is that they take the

bias of local regulators as exogenous while I explicitly endogenize regulator bias as be-

ing due to externalities that local regulators impose on each other. Thus, in my model

there is a benefit of linking, across local regulators, any supervision imposed on local

regulators. This focus generates important novel dynamic implications for regulation.3

Holthausen and Rønde (2004) and Colliard (2014) study economies with privately in-

formed and exogenously biased local regulators, respectively (see also Agur, 2013).

These papers, in addition, allow for financial institutions to react to changes in reg-

ulatory stances explicitly, while financial institutions in my model are mere conduits.

Zoican and Gornicka (2015) study the case of a supervisor of local financial regulators

3Linking actions within the period, and not only over time, can strengthen incentives in many different
economic environments. Roberts (1985) and Goltsman and Pavlov (2014) show, in a static context, how
firms facing oligopolistic competition can partially overcome inefficiencies due to asymmetric information
about production costs by linking output within the period. Santoro (2015) studies optimal fiscal policy
in a monetary union in a static model with two-sided private information and limited commitment. His
model extends the model in Chari and Kehoe (2007) by allowing for private information, and adds to the
analysis in Sanguinetti and Tommasi (2004) by allowing for limited commitment.
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who faces a time-inconsistency problem and may be too lenient ex-post in a way that

distorts incentives of financial institutions toward more risk-taking. Time inconsistency

in Carletti et al. (2015) implies that a supervisor may be too tough ex-post in a way that

distorts incentives of local regulators toward less information collection. As I abstract

from bank risk-taking and local regulator information collection, these sources of time

inconsistency are not present in my model. Foarta (2015) focuses on political economy

frictions and shows that assistance for a country facing financial sector difficulties must

be designed with problems of local governance in mind. She shows that assistance for

a country should be coordinated with both tighter fiscal rules and improved electoral

accountability.

Foarta (2014) studies supervision of a single local regulator in a delegation problem

similar to the one studied in Amador et al. (2006). In her model, dynamics—in the form

of time-varying, rather than static as in Amador et al. (2006), policy cutoffs—can arise

when a local regulator can issue non-contingent debt subject to borrowing constraints.

When a local regulator incurs more debt in the model in Foarta (2014), then it trades

higher discretion today against reduced discretion in the future. Instead, in my model,

state-contingent excessive leniency arises after certain histories to lower the need to

limit discretion of local regulators that have become more “indebted” to the deposit

insurance fund.

2 Model

There are two time periods, t = 1, 2, and two economic regions j = 1, 2, with a local

financial regulator each, and a consumption good. In each region, there is a credit

demand shock θj,t that takes values θL or θH with equal probability in each period. Let

the mean and variance of the shock be denoted by µ and σ2, respectively. It is assumed
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that 1/2 < θL < 1 < θH and that µ < 1. There is a central supervisor operating a

deposit insurance fund. In each region and in each period, there is a measure M > 0

of transparent firms, a measure 1 of opaque firms, and a measure N > M + 1 of banks

and depositors, respectively. Depositors are endowed with one unit of the good that

they are willing to lend to any bank, but only if they receive repayment with certainty.

Banks and firms are protected by limited liability.

Firms have no internal funds and can invest only when borrowing from a bank.

Transparent firms have access to a project that transforms one unit of the good into

either 2(1 + r) or zero units of the good, with equal probability. I assume that r > 0.

Opaque firm i ∈ [0, 1] in region j = 1, 2 has access to a project that transforms one unit

of the good into either 1+ zi or zero units of the good, with equal probability. I assume

that zi is continuously distributed on [0, ∞) with region-specific mean θj,t.
4 I assume

that zi cannot be observed or verified by anyone other than opaque firm i such that, in

particular, a bank cannot ask for repayment larger than one from an opaque firm.

A bank that receives a repayment of less than 1 is considered insolvent. I assume that

insolvent banks cease to monitor firms such that a firm loses its entire cash flow when

its bank becomes insolvent.5 Banks have no internal funds and thus rely on deposits

exclusively. Banks that engage in lending need to acquire insurance for all deposits

since they face a strictly positive probability of insolvency.

The central supervisor requires solvent banks to pay xt units of the consumption

good into the deposit insurance fund per unit of lending to transparent firms. Note

4The parameter θj,t determines the output gain from extending bank lending to opaque firms. The
assumption Prob(θj,t = θH) = 1/2 implies that this gain is higher than average half the time. Gorton
and Ordoñez (2016) find, in a sample of developed and emerging economies, that lending is higher than
average roughly half the time.

5In the model, firm cash flows are already zero when firms cannot repay the bank. Alternatively,
one could assume that any non-zero firm cash flows are on the bank balance sheet at the time of bank
insolvency such that they are being received by the deposit insurance fund. The assumption makes sure
that banks’ monitoring role cannot involve helping firms to defraud the deposit insurance fund.
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that deposit insurance fund contributions must be uniform across the banking union

since banks and transparent firms are mobile across regions.6 The supervisor does

not charge fund contributions per unit of lending to opaque firms as this would lead

to bank insolvency in states of the world where opaque firm cash flows are non-zero.

Since banks are competitive, their profit is always zero and they are indifferent with

regard to lending to transparent firms at gross rate 1 + xt, lending to opaque firms at

gross rate 1, or not lending at all.

Let ℓj,t ∈ [0, 1] denote lending to opaque firms, or leniency, in region j in period t.7 I

assume that 2rM > 1 to ensure that the deposit insurance fund has "deep pockets" in the

sense that contributions, which are at most (1 + 2r)M, can always be chosen to match

withdrawals, which are at most M + 1. I assume that the deposit insurance fund must

break even at each point in time. The deposit insurance fund breaks even whenever

expected deposit insurance fund distributions across the banking union equal expected

contributions as follows:

M +
1

2
(ℓ1,t + ℓ2,t) = Mxt. (1)

Equation (1) shows that deposit fund contributions levied on lending to transparent

firms in each region depend on lending to opaque firms in both regions, xt = 1 +

(ℓ1,t + ℓ2,t)/2M.

Alternatively, it could be assumed that the deposit insurance fund breaks even only

at the end of the second period and borrows in the first period to pay for distributions in

the first period. The timing of contributions to the deposit insurance fund is not crucial

as long as the net present value of contributions passed on to firms is the same for each

6One could, however, think of different risk classes of transparent firms with different probabilities of
zero cash flow but same expected cash flow. Then banks lending to riskier transparent firms would pay
larger deposit insurance fund contributions.

7From the viewpoint of the individual opaque firm, ℓj,t is the probability that its request for a bank
loan of unit size is granted. For example, this could be achieved by making loan approval dependent on
certain observable random characteristics of the opaque firm.
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type of firm. Specifically, the model is consistent with a deposit insurance fund that

carries a low balance to meet its “microprudential role” of insuring deposits that fund

transparent firms while meeting its “macroprudential role” of insuring opaque lending

by raising contributions ex-post.

2.1 Objective of central supervisor

I assume that the central supervisor has the objective of maximizing expected firm profit

across the banking union. Expected firm profits in region j = 1, 2 in period t = 1, 2 are

given by the following equation:

1

2
(2(1 + r)− (1 + xt)) M +

1

2

(

1 + θj,t − 1
)

ℓj,t =
1

2
θj,tℓj,t −

1

4
(ℓ1,t + ℓ2,t) + rM. (2)

Local leniency generates output of local opaque firms but also generates negative spill-

overs, affecting all transparent firms across the banking union, since lending to opaque

firms is a burden to the deposit insurance fund on average. Let ℓj = {ℓj,t(θ
t)}θt∈Θt, t=1,2

denote a path for leniency in region j, where Θ = {θL, θH} × {θL, θH}, and let θt denote

the history of realizations of shocks at time t = 1, 2 such that θt ∈ Θt. I assume that

local regulators have the objective of maximizing expected local firm profits. Using

equation (2), their welfare criteria, up to a constant, are then given by

∑
t=1,2

δt−1

(

1

2

)2t

∑
θt∈Θt

[(

θ1,t −
1

2

)

ℓ1,t(θ
t)− 1

2
ℓ2,t(θ

t)

]

, (3)

∑
t=1,2

δt−1

(

1

2

)2t

∑
θt∈Θt

[(

θ2,t −
1

2

)

ℓ2,t(θ
t)− 1

2
ℓ1,t(θ

t)

]

,
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where δ > 0 is a discount factor. The central supervisor’s welfare criterion is the sum

of individual regions’ welfare criteria as follows:

Ω ≡ ∑
t=1,2

δt−1

(

1

2

)2t

∑
θt∈Θt

[

(θ1,t − 1) ℓ1,t(θ
t) + (θ2,t − 1) ℓ2,t(θ

t)
]

. (4)

Increasing leniency by one (marginal) unit in region j reduces transparent firm prof-

its, conditional on generating a non-zero cash flow, by half a unit in each region via

increased contributions to the deposit insurance fund. The local net benefit of leniency

for local regulator j in period t is therefore 1
2

(

θj,t − 1/2
)

(see equation (3)), while the

economy-wide net benefit is only 1
2

(

θj,t − 1
)

(see equation (4)).

2.2 First-best allocation

The first-best is defined at the paths for leniency that maximize joint welfare; i.e., the

central supervisor’s welfare criterion Ω. Lemma 1 shows that first-best leniency de-

pends only on respective local shocks and is thus independent over time and across

regions.

Lemma 1. First-best leniency in region j at time t is given as follows:

ℓ
FB
j,t (θ

t) = ℓ
FB(θj,t) =











0, if θj,t = θL;

1, if θj,t = θH ,
θt ∈ Θt, t = 1, 2 , j = 1, 2,

and yields joint welfare of ΩFB = (1 + δ)(θH − 1).

Proof. From the expression of Ω in equation (4), it can be seen that leniency in region

j should be as low as possible whenever θj,t < 1, and as high as possible whenever

θj,t > 1. Recall that θL < 1 < θH .

Corollary 1. First-best leniency is not incentive-compatible.
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Proof. The economy-wide net benefit of leniency in region j by equation (4) is given

by θj,t − 1, which is positive only for θj,t = θH . However, local regulator j’s local net

benefit of leniency, according to equation (3), is given by θj,t − 1/2, which is always

positive. A local regulator thus has an incentive to always claim having observed the

high shock.

When all else is constant, a local regulator prefers its own local leniency to be as

high as possible irrespective of the local shock. In section 3, coordination of leniency

will be useful precisely because it removes the notion of “all else constant.”

3 Analysis of the Model

This section characterizes the paths for leniency that maximize the central supervisor’s

objective subject to incentivizing local regulators to truthfully report local shocks. Each

period, both local regulators report respective local shocks at the same time.

3.1 Static case without coordination

In this subsection, I study the case in which leniency in region j can depend only on

the current local shock such that ℓj,t(θ
t) = ℓj,t(θj,t). Leniency is, by assumption, not

coordinated across regions of the banking union in this case. However, local regulator j

then reports the shock that yields it the highest degree of leniency (recall the discussion

following Corollary 1). Leniency is then constant at some ℓ̄ ∈ [0, 1].8 Expected welfare

in region j is given by (µ − 1)ℓ̄ in each period. Since µ < 1, the central supervisor sets

ℓ̄ to zero such that lending to opaque firms is zero at all times and in every region. For

the remainder of this paper, it is assumed that each local regulator must enjoy expected

8ℓ̄ could also be interpreted as an upper bound on leniency (see Melumad and Shibano, 1991; Tanner,
2013; Amador and Bagwell, 2013).
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welfare of at least zero at the beginning of each period. In other words, each member of

the banking union can, before observing its own shock, veto the use of insured deposits

in the funding of loans to opaque firms.

Assumption 1 (individual rationality). At the beginning of each period, before shocks are

observed, each local regulator must enjoy expected welfare of at least zero.

3.2 Static case with coordination

In this section, I study the case in which leniency in region j can depend only on current

shocks such that ℓj,t(θ
t) = ℓj,t(θ1,t, θ2,t). Leniency can potentially be coordinated across

regions of the banking union in this case. Lemma 2 shows how leniency optimally

depends on reported shocks in this case.

Lemma 2. Suppose leniency can depend only on current but not past shocks. Then, joint welfare

is maximized by leniency given by

ℓ1,t(θH , θH) = ℓ2,t(θH , θH) = 1,

ℓ1,t(θH , θL) = ℓ2,t(θL, θH) =
1 − θL

θL
,

ℓ1,t(θL, ·) = ℓ2,t(·, θL) = 0.

Proof. See Appendix A.1.

When both local regulators report the high shock then leniency is first-best across the

banking union. However, leniency is coordinated in the sense that a high need for bank

loans by opaque firms in a region is met only partially when the need for opaque lend-

ing is low in the respective other region. As a result, the discretion of local regulators

to set leniency depending on the local shock is limited. Note that there is no excessive
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leniency, ℓ1,t(θL, ·) = ℓ2,t(·, θL) = 0, such that opaque firms never receive funding when

their average productivity is low. It follows directly from Lemma 2 that period welfare

for each local regulator j = 1, 2 is given by

v0 =
1

4 ∑
θ1,θ2

(

θj,t − 1
)

ℓj,t(θ1,t, θ2,t) =
θH − 1

4θL
, (5)

which is strictly larger than period welfare of zero obtained in the static case without

coordination (section 3.1). The reason for this improvement is that coordinating leniency

within the period can relax incentive compatibility constraints.

Intuitively, a local regulator has a lower incentive to overstate the need for bank

loans by local opaque firms whenever announcing a low need results in reducing loans

to opaque firms in the respective other region. To see this, consider a local regulator

with shock θL who reports θH instead. Such a local regulator now enjoys higher leniency,

on average, which increases the local regulator’s period welfare in expectation by

1

2

[

θL −
1

2

]

+
1

2

[

θL −
1

2

]

1 − θL

θL
=

1

2

(

θL −
1

2

)

1

θL
.

But leniency in the other region is now also higher, on average, which decreases the pe-

riod welfare payoff by 1
2

1
2

(

1 − 1−θL
θL

)

= 1
2

(

θL − 1
2

)

1
θL

. Thus, the local regulator cannot

achieve a net increase in its period welfare by overstating its need for leniency. What

keeps a local regulator from overstating its shock is the expected increase in the other

local regulator’s leniency and the associated increase in contributions to the deposit

insurance fund. Local regulators cannot free ride on each other’s contributions toward

the deposit insurance fund if leniency is coordinated in this way.
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3.3 Dynamic case with coordination

The main focus of this paper is how leniency in each region depends on current as well

as past shocks across the two regions in the banking union. Leniency can thus be coor-

dinated within each period and local regulators can also transfer utility intertemporally.

I use my model to study how within-period coordination changes when local regulators

transfer utility intertemporally. Policy implications are discussed.

3.3.1 Second period

It is useful to first characterize the set of feasible second-period welfare pairs that can

be delivered to local regulators. Let v ∈ [0, v̄] be second-period welfare to be delivered

to local regulator j = 2. The lower bound on v is due to Assumption 1, and v̄ will be

defined below. For a given v, let ℓj(θ1, θ2) be leniency of local regulator j = 1, 2 when

local regulator one reports shock θ1 and local regulator two reports shock θ2 in the

second period. Local regulator two enjoys second-period welfare of at least v whenever

the following promise-keeping constraint holds:

1

4 ∑
(θ1,θ2)∈Θ

[

θ2ℓ2(θ1, θ2)−
1

2
ℓ1(θ1, θ2)−

1

2
ℓ2(θ1, θ2)

]

≥ v. (6)
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Local regulators will report shocks truthfully whenever the following incentive compat-

ibility constraints hold:9

1

2 ∑
θ2∈{θL,θH}

[

θLℓ1(θL, θ2)−
1

2
ℓ1(θL, θ2)−

1

2
ℓ2(θL, θ2)

]

≥ 1

2 ∑
θ2∈{θL,θH}

[

θLℓ1(θH , θ2)−
1

2
ℓ1(θH , θ2)−

1

2
ℓ2(θH , θ2)

]

, (8)

1

2 ∑
θ1∈{θL,θH}

[

θLℓ2(θ1, θL)−
1

2
ℓ1(θ1, θL)−

1

2
ℓ2(θ1, θL)

]

≥ 1

2 ∑
θ1∈{θL,θH}

[

θLℓ2(θ1, θH)−
1

2
ℓ1(θ1, θH)−

1

2
ℓ2(θ1, θH)

]

. (9)

Let P(v) be the highest second-period welfare that can be delivered to local regulator

one given the promise v to local regulator two. That is, P(v) is defined as

P(v) = max
{ℓj}j=1,2

1

4 ∑
(θ1,θ2)∈Θ

[(

θ1 −
1

2

)

ℓ1(θ1, θ2)−
1

2
ℓ2(θ1, θ2)

]

, (10)

subject to (6), (8), and (9). Then the graph of P, {(v1, v2) : v2 ∈ [0, v̄], v1 = P(v2)}, is

the Pareto frontier in period two. Note that P(v) is decreasing by the promise-keeping

constraint (6). I define v̄ = P(0). In the case in which both local regulators enjoy the

same second-period welfare, P(v0) = v0, the allocation is given by Lemma 2 and v0 is

given by equation (5). Depending on the parameters, there are two cases to consider

for how leniency of local regulators is affected when v 6= v0. Assumption 2 identifies

9When conditions (8) and (9) are satisfied, local regulators will have no incentive to understate shocks
as long as the following monotonicity condition holds:

∑
θ2∈{θL,θH}

[ℓ1(θH , θ2)− ℓ1(θL, θ2)] ≥ 0, and ∑
θ1∈{θL,θH}

[ℓ2(θ1, θH)− ℓ2(θ1, θL)] ≥ 0. (7)

Condition (7) requires that the function ℓj increases in θj in expectation, for j = 1, 2. However, the
condition is satisfied at an optimum and can be ignored.
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the relatively more interesting case in which leniency or discretion to exercise leniency

depending on the local shock, or both, matter in the economy.

Assumption 2. Leniency or discretion matter in the sense that σ >
√

µ(1 − µ).

The condition in Assumption 2 holds if discretion matters in the sense of σ be-

ing large, or if leniency matters in the sense of µ being large (see Figure 1). When

neither matters, then the condition does not hold and the problem studied in this pa-

per—the problem of how to allow local regulators to exercise discretion with respect

to leniency—is not a very interesting one. Policy discussions about “leaning against

the wind” and “counter-cyclical regulation” suggest that regulatory leniency should

depend on economic and financial conditions. In particular the potential for tail events

implies that the range of economic and financial conditions considered should not be

too narrow—i.e., σ should not be too small—in any discussion of financial regulation

(Basel Committee on Banking Supervision, 2010). Discretion with respect to regulatory

leniency in the form of regulatory forbearance also seems to play an important role in

practice (Huizinga and Laeven, 2012). Assumption 2 is thus maintained throughout this

section.

When v 6= v0, the question arises as to how we can make one local regulator better

off than the other along the Pareto frontier. Since local regulators are ex ante identical,

it is sufficient to characterize the case v < v0 (or equivalently P(v) > v0) where local

regulator one obtains relatively higher second-period welfare along the Pareto frontier.

Lemma 3 shows how this is optimally achieved.

Lemma 3. Suppose v < v0, such that local regulator one is better off along the Pareto frontier.

Then, relative to the allocation at v0,

1. ℓ1(θH , θL) is strictly higher,
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2. ℓ2(θL, θH) is unchanged for 3σ − µ ≤ 0, and strictly lower otherwise,

3. ℓ1(θL, θH) is strictly higher; ℓ2(θH , θL) remains unchanged at zero,

4. leniency is unchanged in the state in which both local regulators experience the same

shock; specifically, ℓ1(θL, θL) and ℓ2(θL, θL) remain unchanged at zero, and ℓ1(θH , θH)

and ℓ1(θH , θH) remain unchanged at 1.

Proof. See Appendix A.1.

When v < v0, then local regulator one is better off along the Pareto frontier. Lemma 3

shows how the allocation of leniency changes relative to the symmetric case v = v0

characterized in Lemma 2. Specifically, local regulator one is made better off by allowing

it increased discretion; i.e., ℓ1(θH , θL) increases while ℓ1(θH , θH) remains at 1. If 3σ−µ ≤

0 (region B in Figure 1) then local regulator two is not required to reduce its discretion to

exercise leniency, such that ℓ2(θL, θH) is unchanged while ℓ2(θH , θH) stays at the upper

bound 1. However, both the increased discretion for local regulator one and the fact

that local regulator two may not be required to decrease its discretion work toward

weakening incentives to report shocks truthfully. Incentives are maintained along the

Pareto frontier via state-contingent leniency by local regulator one that is excessive in the

sense of generating expected cash flows lower than borrowed funds at opaque firms. In

particular, local regulator one exercises strictly positive leniency ℓ1(θL, θH) in the state

where only local regulator two experiences the high shock. Allowing ℓ1(θL, θH) > 0

has the benefit of reducing the stress that discretion by both local regulators puts on

incentive compatibility conditions. In particular, ℓ1(θH , θL) and ℓ1(θL, θH) increase by

the same amount in v such that the respective net effects on incentive conditions (8) and

(9) are none. In contrast, ℓ1(θL, θL) remains at zero, since leniency of local regulator one

in this state contributes less to maintaining incentives.
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Figure 1: Restrictions on model parameters µ and σ in (µ, σ) space. Param-
eter pairs in A or B satisfy all restrictions imposed by µ < 1, θL − 1

2 > 0,
θH − 1 > 0, and Assumption 2. The line σ = µ

3 divides the region of permis-
sible parameter pairs into two subregions, A and B.

The use of state-contingent excessive leniency along the Pareto frontier reduces the

need to decrease discretion of the local regulator with lower second-period welfare.

Lemma 4 shows that, as a result, expected leniency may increase relative to the symmet-

ric case v = v0. Specifically, if 3σ − µ ≤ 0, a transfer of second-period welfare among

local regulators is associated with higher expected leniency. An increase in expected

leniency reduces financial stability in the banking union in the sense of increasing ex-

pected withdrawals from the deposit insurance fund.

Lemma 4. If 3σ−µ ≤ 0, then along the Pareto frontier expected leniency across local regulators

is strictly higher when v 6= v0 compared with the case v = v0.

Proof. See Appendix A.1.

19



3.3.2 First period

Local regulators can be assigned different second-period welfare levels, v1 and v2, in the

first period in a way that encourages them to truthfully reveal the shocks they experience

in the first period, as is standard in the risk-sharing literature. That is, second-period

welfare can be made contingent on reports of shocks in the first period, vj : Θ → R+.

The Pareto frontier derived in the previous section allows us to express the set of feasible

pairs of second-period welfare as

P =
{

(v1, v2) ∈ R
2
+ : v1 ≤ P(v2)

}

. (11)

Let ℓj denote leniency of local regulator j in the first period, ℓj : Θ → [0, 1]. The

problem of a central supervisor of local regulators that wishes to maximize joint welfare

of local regulators Ω is as follows:

max
{ℓj,vj}j=1,2

1

4 ∑
(θ1,θ2)∈Θ

[(θ1 − 1)ℓ1(θ1, θ2) + (θ2 − 1)ℓ2(θ1, θ2) + δ(v1(θ1, θ2) + v2(θ1, θ2))] ,

(12)

subject to incentive compatibility

1

2 ∑
θ2∈{θL,θH}

[

θLℓ1(θL, θ2)−
1

2
ℓ1(θL, θ2)−

1

2
ℓ2(θL, θ2) + δv1(θL, θ2)

]

≥ 1

2 ∑
θ2∈{θL,θH}

[

θLℓ1(θH , θ2)−
1

2
ℓ1(θH , θ2)−

1

2
ℓ2(θH , θ2) + δv1(θH , θ2)

]

,

(13)
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1

2 ∑
θ1∈{θL,θH}

[

θLℓ2(θ1, θL)−
1

2
ℓ1(θ1, θL)−

1

2
ℓ2(θ1, θL) + δv2(θ1, θL)

]

≥ 1

2 ∑
θ1∈{θL,θH}

[

θLℓ2(θ1, θH)−
1

2
ℓ1(θ1, θH)−

1

2
ℓ2(θ1, θH) + δv2(θ1, θH)

]

,

(14)

and feasibility (v1(θ1, θ2), v2(θ1, θ2)) ∈ P for all (θ1, θ2) ∈ Θ. Lemma 5 verifies that

variation in second-period welfare is in fact used in the first period to make leniency

more responsive to shocks in the first period.

Lemma 5. The solution to the central supervisor’s problem has the following characteristics:

1. When local regulators experience the same shock in the first period, then both local reg-

ulators receive second-period welfare of v0. First-period leniency is first-best, as in the

allocation in Lemma 2.

2. When local regulators experience different shocks in the first period, then second-period

welfare is varied along the Pareto frontier; i.e., θi < θj implies vi > vj = P(vi). First-

period leniency is not first-best but local regulators enjoy more discretion compared with

the allocation in Lemma 2.

Proof. See Appendix A.1.

When both local regulators experience the same shock, then optimal static leniency

given by Lemma 2 already delivers the first-best. Variation in second-period welfare is

not beneficial in this case, such that both local regulators receive second-period welfare

of v0. In the case in which local regulators experience different shocks, it is beneficial

to vary second-period welfare in order to improve upon partial insurance provided by

the allocation in Lemma 2. Together, Lemmas 3 and 5 yield the main result of the

paper. Proposition 1 shows how current coordination of leniency across local regulators

depends on history.
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Proposition 1. Let θ1, θ2 be shocks in the first period. If θ1 = θ2, then optimal leniency in the

second period is as given in Lemma 2. If θ1 6= θ2, such that θi < θj, then in the second period,

compared with the case θ1 = θ2,

1. local regulator i enjoys strictly higher discretion,

2. local regulator j’s discretion is unchanged if 3σ − µ ≤ 0 and strictly lower otherwise,

3. local regulator i engages in state-contingent excessive leniency; specifically, leniency of

local regulator i is strictly positive in the state of the world where only local regulator j

experiences a high shock, but zero in the state where both experience the low shock.

Proof. We know from Lemma 5 that second-period welfare is v1 = v2 = v0 whenever

θ1 = θ2 in the first period. However, second-period leniency is then given in Lemma 2.

We know from Lemma 5 that θi < θj implies second-period welfare of vi > vj along the

Pareto frontier. The implications for second-period leniency then follow from Lemma 3.

Inefficiencies due to a past disagreement about the need for leniency—i.e., costly

movements along the Pareto frontier away from symmetric second-period welfare—can

be mitigated by adjusting coordination of leniency. Coordination is adjusted to expand

outward the set of feasible second-period welfare pairs and hence to make intertempo-

ral utility transfers cheaper. This is why intertemporal and intratemporal margins for

incentive provision should interact at an optimum.

A local regulator is rewarded for exercising less leniency in the first period by grant-

ing it more discretion over regulatory leniency in the second period. Period two in-

centive compatibility is maintained by allowing that local regulator to discipline the

respective other local regulator via state-contingent excessive leniency. An alternative

way of maintaining incentives would be to strongly reduce discretion of the regulator
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that is more “indebted” to the deposit insurance fund. This turns out to be not optimal,

however, whenever Assumption 2 holds; i.e., whenever average output generated from

leniency is not too low.10

Hence, a local regulator oversees delivery of its higher second-period welfare by

disciplining the respective other local regulator. In that sense, excessive leniency is

not a direct punishment of the other local regulator for its past behavior, but rather a

means of facilitating intertemporal utility transfers. The model thus gives an example

of how short-lived institutions (i.e., one local regulator disciplining the other) can arise

endogenously after certain histories within a long-lived relationship (i.e., the ex ante

optimal supervisory arrangement).

3.4 Discussion of policy implications

Optimal supervision of local regulators focuses on rewarding lower leniency in the past

with higher discretion in the future. Indeed, higher leniency in the past may not be

punished at all by lower discretion in the future. The supervisor makes this focus

on rewarding good behavior rather than punishing bad behavior incentive-compatible

by rewarding not only with higher discretion but also with state-contingent excessive

leniency.

A banking union may be able to avoid costly limits on discretion to support local

lending for members that already supported lending in the past while avoiding moral

hazard at the same time. The side-payment technology suggested in this paper works

indirectly via the deposit insurance fund. It is available because it uses the same features

10Section 4 relaxes this assumption and extends the model to an infinite horizon. The main insight is
that discretion of a local regulator that becomes more “indebted” to the deposit insurance fund tends
to decrease slowly while discretion of a regulator that becomes more of a “creditor” tends to increase
quickly. The latter is allowed to engage in state-contingent excessive leniency to make such an emphasis
on rewards over punishments incentive-compatible. The role of Assumption 2 is to avoid this channel
“going missing” in the two-period benchmark version of the model where P has a kink at v = v0.
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of the banking union that are also involved in creating the moral hazard motive in the

first place.11

Insufficient regulatory discretion may be one reason why some countries in the Eu-

ropean Union have suffered a more severe financial crisis compared with the 2007-2009

US financial crisis.12 However, Proposition 1 suggests that members of a banking union

should have discretion to address local lending demand even if they already accom-

modated such demand in the past. Members not in need of supporting local lending

themselves can help to maintain incentives by nevertheless supporting their own local

lending to some degree. In that sense, members that are creditors to the deposit insur-

ance fund should “stimulate” their local economy with increased bank lending rather

than requiring limited discretion, or “austerity,” by members that are indebted to the

deposit insurance fund.

When members of a banking union coordinate lending optimally, past economic con-

ditions affect future expected withdrawals from the deposit insurance fund. This holds

even though economic conditions are assumed to be independent across members and

over time. Specifically, Corollary 2 gives sufficient conditions for when past disagree-

ment regarding the need for leniency across local regulators leads to higher expected

leniency and thus to higher expected losses to the deposit insurance fund. In that sense,

financial stability declines when regulators had different shocks—i.e., different needs to

exercise leniency—in the past.

Figure 2 illustrates that discretion is a convex function of promised second-period

11Dell’Ariccia and Marquez (2006) analyze the trade-off between a loss of discretion and a reduction
of moral hazard when central supervision imposes the same policy on each member of a banking union
(as in section 3.1 of this paper). They find that with loss of discretion, central supervision improves
welfare only if members are sufficiently similar. Their argument is related to the criteria for currency
areas developed in Mundell (1961).

12Another potential difference is that the United States may have higher fiscal capacity to support lend-
ing during a financial crisis. For example, the Troubled Asset Relief Program (TARP) and the Temporary
Liquidity Guarantee Program (TLGP) may have benefited from the possibility of obtaining funding from
the US Treasury. I discuss distortionary local taxation as a direct side-payment technology in section 3.5.
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Figure 2: Panel 2a illustrates that a local regulator’s discretion to exercise
leniency χj,2—as measured by ℓ1(θH, θL) and ℓ2(θL, θH), respectively—is a
convex function of its second-period welfare in the case where θH ≤ 2θL

(Corollary 2). Panel 2b illustrates that only local regulators with relatively
higher second-period welfare engage in excessive leniency Ej,2 as measured
by ℓ1(θL, θH) and ℓ2(θH, θL), respectively. The dotted lines indicate symmet-
ric second-period welfare of v0.

welfare when shocks are not too far apart, θH ≤ 2θL, such that local regulators are

rewarded with higher discretion but never punished with lower discretion. As a result,

expected leniency is higher whenever local regulators experienced different shocks in

the past when θH ≤ 2θL.

Corollary 2. Suppose 3σ − µ ≤ 0, or equivalently θH ≤ 2θL. Let θ1, θ2 be shocks in the first

period. If θi < θj—i.e., local regulator j was relatively more lenient in the first period—then in

period two, compared with the case where θ1 = θ2,

1. expected leniency across local regulators is strictly higher,

2. discretion of local regulator j is not reduced; in fact, leniency of local regulator j is the

same.

Proof. The result follows from Lemmas 3 and 4 together with Lemma 5.
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3.5 Indirect and direct side-payment technologies

It was shown in section 3.3 that optimal supervision makes use of an indirect side-

payment technology in the second period if (and only if) local regulators had different

shocks in the first period. Suppose regulator two had a relatively higher shock in the

first period. Then second-period excessive leniency of regulator one, ℓ1(θL, θH) > 0,

implies a costly side payment from regulator two to regulator one. To see this, note

that regulator two experiences a net loss of 1
2ℓ1(θL, θH) while regulator one enjoys a net

benefit of (θL − 1/2)ℓ1(θL, θH). This implicit payment is costly, since the economy-wide

net benefit θL − 1 is negative, but it allows regulator two to pay for having higher le-

niency repeatedly; i.e.; in the second period ℓ1(θL, θH) > 0 reduces the need to reduce

ℓ2(θL, θH). In the case where θH ≤ 2θL (Corollary 2), the indirect side-payment technol-

ogy is attractive enough to make second-period leniency of regulator two independent

of the shock it reported in the first period.

Suppose there is also a direct side-payment technology in the form of a local fiscal

backstop that allows local regulators to contribute individually to the deposit insurance

fund, or equivalently, to directly pay for the losses associated with local leniency. It is

assumed that local fiscal backstops are distorting in the sense that regulator two must

incur a loss of 1 when regulator one is to enjoy a benefit of λ < 1. The parameter λ

captures the fiscal capacity of each member of the banking union such that a higher

fiscal capacity lowers the cost of the direct side-payment technology.

Lemma 6. The direct side-payment technology is equivalent to the indirect side-payment tech-

nology when fiscal capacity is λ = 2θL − 1 ∈ (0, 1), it dominates when λ > 2θL − 1, and it is

not used otherwise.

Proof. Follows immediately from the preceding discussion.

When financial sector industry levies are used to pay for defaults associated with le-
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niency, then economic distortions may be smaller compared with the case in which local

fiscal backstops are used (ASC, 2012), which is captured by λ < 1. However, reliance

on a deposit insurance or resolution fund backed by uniform industry levies leads to

incentive distortions as it creates negative externalities from local leniency. Lemma 6

shows that, unless fiscal capacity exceeds 2θL − 1, there is no reason to augment the

banking union’s fund with local fiscal backstops. Supervision has access to an indirect

side-payments technology that supports maintaining high discretion over time even if

fiscal backstops are not available due to limited fiscal capacity.

3.6 Relation to literature on risk sharing and optimal delegation

The tightening of coordination over time, in the sense of state-contingent excessive le-

niency, following past disagreement is the result of the interaction of two channels for

incentive provision that have been studied extensively, albeit separately, in the literature.

This paper, on the other hand, focuses on the interaction of intratemporal margins (e.g.,

Roberts, 1985) and intertemporal margins (e.g., Taub, 1994) for incentive provision. For

instance, many dynamic contracting problems have a solution that features (ex-post)

inefficiently high consumption of sufficiently wealthy lenders as a reward for past fru-

gality (e.g., Thomas and Worrall, 1990; Atkeson and Lucas, 1992; Iovino and Golosov,

2013). However, in this paper, such excessive leniency is employed only in certain states,

and after certain histories, as a means of providing additional incentives via immediate

reciprocity. As a result, “debtors” may not be required to repay (Corollary 2). These fea-

tures of my model are new relative to the existing risk-sharing literature and generate

novel policy implications.

In Amador and Bagwell (2012, 2013), agents cause negative externalities, such as

import tariffs, on each other but contract separately with a principal who wishes to
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limit excessive externalities. I allow for this simultaneity to matter for contracting such

that an indirect side-payment technology is being created, which becomes useful after

certain histories. For example, a country facing a trading partner that imposes relatively

higher import restrictions, after having already done so in the past, should respond

immediately by imposing high import restrictions as well, even if this leads to lower

joint welfare ex-post. That is, retaliatory tariffs can become temporarily optimal over

time. My model also suggests that regional trade agreements are more effective at

lowering trade barriers than agreements at the level of the World Trade Organization

(Baldwin, 2016) (since retaliatory tariffs can be better targeted when there are fewer

participants).

4 Extension to Infinite Horizon

Consider now the case of infinitely many time periods, t = 0, 1, 2, . . . . Suppose each

local regulator enjoys instantaneous utility payoffs from local leniency ℓ ∈ X ⊂ R+

given by the function u : R+ × Θ → R. On the set Θ = {θ1, θ2, . . . , θN}, an inde-

pendent and identically distributed (i.i.d.), across local regulators and over time, uni-

formly distributed discrete random variable θ is defined. Its realizations are ordered,

0 < θ1 < · · · < θN < ∞. Future payoffs are discounted by δ ∈ (0, 1). It is assumed that

u(ℓ, θ) is twice continuously differentiable and strictly concave in ℓ, strictly increasing

in θ, and that u′(ℓ, θ) = ∂u(ℓ,θ)
∂ℓ is strictly increasing in θ. Payoffs are single-peaked in

the sense that, for some l < ∞, ∂u(ℓ,θN)
∂ℓ ≥ 0 for ℓ ≤ l and ∂u(ℓ,θN)

∂ℓ < 0 for ℓ > l. Without

loss of generality, we can therefore restrict attention to levels of leniency taking values

on the interval X = [0, L] for some L > l. Specifically, assume that u(ℓ, θ) = θν(ℓ)− 1
2ℓ,

where ν is strictly increasing, strictly concave and twice differentiable.13 Due to joint

13In section 2, ν(ℓ) = min(ℓ, 1) and the effective upper bound on leniency 1 was arbitrary.
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contributions to the deposit insurance fund, the net payoff of local regulator i is given

by u(ℓi , θi)− 1
2ℓj where j denotes local regulator j 6= i and θi is the parameter of local

regulator i. The joint net payoff to local regulators is given by

u(ℓ1, θ1) + u(ℓ2, θ2)− 1

2
ℓ1 −

1

2
ℓ2, (15)

when ℓ1, ℓ2 are the respective actions by the two local regulators.

Definition 1. First-best leniency is defined by the function ℓFB : Θ → X such that u′(ℓFB(θ), θ) =

1
2 , for all θ ∈ Θ. Privately optimal leniency is defined by the function ℓ∗ : Θ → X such that

u′(ℓ∗(θ), θ) = 0, for all θ ∈ Θ. Note that ℓFB < ℓ∗ uniformly on Θ.

Note that a local regulator’s net payoff is highest when its leniency is ℓ∗, for given

leniency of the respective other local regulator. Also note that the sum of net payoffs

across regulators is highest when leniency is given by ℓFB for each local regulator.

4.1 Recursive formulation

Optimal supervision of local regulators is characterized by solving for the Pareto set of

discounted expected values of net payoffs to each local regulator. As is standard in the

literature, values in the Pareto set are delivered by a combination of current leniency and

future (continuation) values. For a given current value of local regulator two, v ∈ V,

define the functions for leniency ℓi : Θ2 → X and continuation values vi : Θ2 → V,

i = 1, 2. Let V = [v, v̄], where the lower bound on V is motivated by Assumption 3,

which is an analogue to Assumption 1, and the upper bound is defined below.

Assumption 3. At the beginning of each period, before observing its parameter, either local reg-

ulator has the option to demand that the supervisor prescribe optimal static no-coordination poli-

cies for both local regulators from the current period onward. The optimal static no-coordination
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policy is an optimally chosen upper bound ℓ̄ on leniency and yields the value of

v = max
ℓ̄

1

1 − δ

1

N

N

∑
i=1

[

u(ℓ̃(θi), θi)−
1

2
ℓ̃(θi)

]

where ℓ̃(θi) = min
(

ℓ̄, ℓ∗(θi)
)

∀θi ∈ Θ.

That is, any policy that a supervisor prescribes must yield values of at least v for either local

regulator.

Define an operator T on C(V), the space of continuous, decreasing, and concave

functions on V, by

(T f )(v) = max
ℓ1,ℓ2,v1,v2

1

N2 ∑
(θi,θj)∈Θ2

[

u(ℓ1(θi, θj), θi)−
1

2
ℓ2(θi, θj) + δv1(θi , θj)

]

(16)

subject to

1

N2 ∑
(θi,θj)∈Θ2

[

u(ℓ2(θi, θj), θj)−
1

2
ℓ1(θi, θj) + δv2(θi, θj)

]

≥ v (17)

1

N ∑
θj∈Θ

[

u(ℓ1(θi, θj), θi)−
1

2
ℓ2(θi, θj) + δv1(θi, θj)

]

(18)

≥ 1

N ∑
θj∈Θ

[

u(ℓ1(θi+1, θj), θi)−
1

2
ℓ2(θi+1, θj) + δv1(θi+1, θj)

]

, i = 1, 2, . . . , N − 1

1

N ∑
θi∈Θ

[

u(ℓ2(θi , θj), θj)−
1

2
ℓ1(θi , θj) + δv2(θi, θj)

]

(19)

≥ 1

N ∑
θi∈Θ

[

u(ℓ2(θi, θj+1), θj)−
1

2
ℓ1(θi, θj+1) + δv2(θi, θj+1)

]

, j = 1, 2, . . . , N − 1

v1(θi, θj) ≤ f (v2(θi, θj)), v2(θi , θj) ∈ V, for all i, j = 1, 2, . . . , N. (20)

The maximization problem yields the highest possible value for local regulator one

given that local regulator two receives value of at least v where “feasibility” of the

(continuation) values v1, v2 is determined by the function f .14 The upper bound on

14Lemma 9 in Appendix A.1 shows that, as long as leniency of each local regulator is increasing in its
shock, it is sufficient to focus on adjacent upward incentive constraints.
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feasible values is then given by v̄ = P(v).

Lemma 7. T has a unique fixed point P that is strictly decreasing, strictly concave, and contin-

uously differentiable on V. The Pareto set {(v1, v2) : v1 = P(v2), v2 ∈ V} is self-generating

(see Abreu et al., 1990) in the sense that constraint (20) is always binding for f = P.

Proof. See Appendix A.1.

Definition 2. The set of feasible (continuation) values is defined by {(v1, v2) : v1 ≤ P(v2), v2 ∈

V}.

Definition 3. Denote the symmetric (promised) value by v̂ = P(v̂).

The properties of P that Lemma 7 establishes are helpful since optimal leniency

and continuation values can be characterized by examining first-order conditions from

problem (16) where f = P. The optimality conditions for leniency ℓ1 and ℓ2, respectively,

are

u′(ℓ1(θi , θj), θi) [1 + ψ1(θi)]− u′(ℓ1(θi, θj), θi−1)ψ1(θi−1) =
1

2

[

τ + ψ2(θj)− ψ2(θj−1)
]

,

(21)

u′(ℓ2(θi, θj), θj)
[

τ + ψ2(θj)
]

− u′(ℓ2(θi, θj), θj−1)ψ2(θj−1) =
1

2
[1 + ψ1(θi)− ψ1(θi−1)] ,

(22)

where τ, ψ1, and ψ2 are the Lagrange multipliers on constraints (17), (18), and (19),

respectively. The optimality conditions for continuation payoffs v2 and envelope condi-

tions are given by

−P′ (v2(θi, θj)
)

=
τ + ψ2(θj)− ψ2(θj−1)

1 + ψ1(θi)− ψ1(θi−1)
, (23)

−P′(v) = τ. (24)
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Lemma 8 summarizes some straightforward implications of these conditions.

Lemma 8. Conditions (21) to (24) have the following implications:

1. The geometric mean of realized marginal net payoffs is always bounded above by 1
2 , the

first-best marginal utility,

√

u′(ℓ1(θi, θj), θi)u′(ℓ2(θi , θj), θj) ≤
1

2
,

for i, j = 1, 2, . . . , N with equality only if i = j = 1.

2. If v = v̂, then v2(θi, θi) = v = v̂ for i = 1, 2, . . . , N.

3. ℓ1(θi, θj) ≤ ℓ1(θi , θj+1) if and only if v2(θi, θj) ≥ v2(θi, θj+1), for i = 1, 2, . . . , N and

j = 1, 2, . . . , N − 1.

4. ℓ2(θi, θj) ≤ ℓ2(θi+1, θj) if and only if v1(θi, θj) ≥ v1(θi+1, θj), for j = 1, 2, . . . , N and

i = 1, 2, . . . , N − 1.

5. v1(θi, θj) > v̂ implies u′(ℓ1(θi, θj), θi) ≤ 1
2 , and v2(θi, θj) > v̂ implies u′(ℓ2(θi, θi), θj) ≤

1
2 , for i, j = 1, 2, . . . , N.

Proof. See Appendix A.1.

Lemma 9 in Appendix A.1 shows that, as long as leniency of each local regulator

is increasing in its shock—as in the numerical example considered below—it is suf-

ficient to focus on adjacent upward incentive constraints in order to ensure incentive

compatibility of the allocation. In that case, Lemma 8 characterizes features of optimal

supervision of local regulators.

When leniency of each local regulator is increasing in its shock, then Lemma 8 gives

a sense of the way in which, on average, local regulator leniency is higher than first-best.
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It also shows that if both local regulators enjoy the same value along the Pareto frontier,

then they will continue to do so as long as they receive the same shock, independent of

the level of that shock. It is further shown that if optimal supervision uses continuation

values to incentivize a local regulator, then it also uses leniency of the respective other

local regulator to incentivize the former, and vice versa. Finally, Lemma 8 shows that a

regulator that is awarded a higher continuation value in a particular state is also allowed

to engage in excessive leniency in that state. Such a local regulator has a relatively higher

current value; i.e., has received relatively lower shocks in the past, or is experiencing

a relatively lower shock in the current period, or both. When both is the case, then

Lemma 8 suggests an infinite-horizon analogue to Proposition 1. That is, the local

regulator that exercised relatively less leniency in the past is allowed to engage in state-

contingent excessive leniency in the current period.

4.1.1 Numerical exercise

In the two-period version of the model, one can solve for optimal supervision by

hand and characterize analytically an emphasis on rewards over punishment. Re-

call that Corollary 2 gives conditions under which discretion is a convex function of

second-period welfare in the two-period version of the model, as shown in Figure 2.

This section presents a numerical example with ν(ℓ) = 2
√
ℓ, δ = 0.8, N = 5, and

Θ = {0.5, 0.625, 0.75, 0.875, 1}. Figure 4 shows that discretion χ is convex in promised

value around the symmetric value v̂, and that excessive leniency E increases in promised

value.15 The insights from section 3 are confirmed: local regulators get rewarded

15The definitions for discretion and excessive leniency are as follows:

χ =
1

N

N

∑
i=1

[

ℓ2(θi, θN)− min
(

ℓ2(θi, θ1), ℓ
FB(θ1)

)]

,

E =
1

N

N

∑
j=1

[

ℓ2(θN , θj)− ℓ2(θ1, θj)
]

· 1ℓ2(θN,θj)≥ℓFB(θN)
,
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promised value v

P
(v
)

(a) Pareto frontier P

θjθi

ℓ 2
(θ

i,
θ j
)

(b) Leniency of local regulator two ℓ2

θjθi

v 2
(θ

i,
θ j
)

(c) Continuation value of local regulator
two v2

Figure 3: The dotted line in panel 3a indicates the symmetric value v̂ in the
numerical example. Panels 3b and 3c show ℓ2 and v2, respectively, when the
value promised to local regulator two is v̂.

with increased discretion rather than punished with reduced discretion, which is made

incentive-compatible by allowing the local regulator that was relatively less lenient in

the past to engage in state-contingent excessive leniency. Figure 4c shows, in an ana-

logue to Corollary 2, that expected leniency across local regulators is higher the more

regulatory stances differed in the past, i.e. the further current promised values are apart.

where 1 is the indicator function. Note that ℓFB(θ) = θ2 when ν(ℓ) = 2
√
ℓ. The role of the min-operator

in the definition of χ is to avoid a higher measure of excessive leniency reducing measured discretion.
The role of the indicator function in the definition of E is to focus on immediate reciprocity that involves
excessive leniency.
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Figure 4: Panel 4a and 4b confirm the intuition gained from Figure 2 in the
context of the numerical example. Local regulators get rewarded with in-
creased discretion to a relatively higher degree than they are punished with
reduced discretion. Incentive compatibility is maintained by allowing the
local regulator that was relatively less lenient in the past to engage in state-
contingent excessive leniency. Figure 4c shows that, as a result, expected
leniency across local regulators is higher the further apart promised values
are. The dotted line indicates the symmetric value v̂.
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5 Conclusion

Financial regulators sometimes oversee lending booms that have the potential to create

bank losses from non-performing loans far exceeding the deposit insurance fund bal-

ance. In addition, financial regulators sometimes help maintain lending by banks with

high levels of non-performing loans by providing further guarantees via the deposit in-

surance fund. In both cases, banks that lend to higher-quality borrowers may be asked

to increase their contributions to the deposit insurance fund. When banks are compet-

itive, such policies may create negative spillovers among borrowers of different types.

Unless members of a banking union implement identical lending policies for each type

of borrower, spillovers among members, and with it concerns about moral hazard, can

arise.

In this paper, I show that a supervisor of local financial regulators in a banking union

can do better than imposing uniform policies at all times. Under optimal supervision,

local regulators enjoy some discretion with respect to their policy stance. In order to

strengthen incentives for local regulators to share relevant information, they should be

supervised jointly, rather than separately: optimal supervision coordinates regulatory

leniency across local regulators within each period.

The first major insight is that optimal supervision focuses more on rewarding past

restraint than on punishing past leniency. Specifically, a local regulator that exercised

relatively more leniency in the past may therefore not be required to reduce its discretion

to exercise leniency in the future. The second major insight is that past disagreement

about regulatory policy stances across local regulators causes financial stability to de-

teriorate in the future. Specifically, when local regulators exercised different degrees of

leniency in the past, then expected leniency in the future may increase, imposing higher

expected losses on an economy-wide deposit insurance fund.
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A Appendix

A.1 Proofs

Proof of Lemma 1. This is immediate from the assumption that θL < 1 < θH.
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Proof of Lemma 2. Since local regulators have symmetric preferences, and leniency is static, it

follows that ℓ1(s1, s2) = ℓ2(s2, s1). The problem can then be written as

max
ℓ1(s1,s2)∈[0,l]

2(1 + δ)
1

4
[(θL − 1)(ℓ1(sL, sL) + ℓ1(sL, sH)) + (θH − 1)(ℓ1(sH, sL) + ℓ1(sH, sH))] ,

subject to incentive compatibility

(

θL −
1

2

)

(ℓ1(sL, sL) + ℓ1(sL, sH))−
1

2
(ℓ1(sL, sL) + ℓ1(sH, sL))

≥
(

θL −
1

2

)

(ℓ1(sH, sL) + ℓ1(sH, sH))−
1

2
(ℓ1(sL, sH) + ℓ1(sH , sH)).

Since this is a linear program, it is sufficient to verify that its first-order conditions are satisfied

by the allocation proposed in the lemma. Letting ψ > 0 denote the multiplier on the incentive

compatibility constraint, these conditions are

ℓ1(sL, sL) : θL − 1 +

(

θL −
1

2

)

ψ − 1

2
ψ = −(1 − θL)(1 + ψ) < 0,

ℓ1(sL, sH) : θL − 1 +

(

θL −
1

2

)

ψ +
1

2
ψ < 0,

ℓ1(sH, sL) : θH − 1 −
(

θL −
1

2

)

ψ − 1

2
ψ = 0,

ℓ1(sH, sH) : θH − 1 −
(

θL −
1

2

)

ψ +
1

2
ψ = θH − 1 + (1 − θL)ψ > 0,

ψ ·
[

−1

2

1 − θL

θL
l −

((

θL −
1

2

)(

1 − θL

θL
l + l

)

− 1

2
l

)]

= 0.

The first, fourth and fifth conditions clearly hold. To see that the second holds given the third,

note that the third condition can be solved for ψ = θH−1
θL

such that

θL − 1 +

(

θL −
1

2

)

ψ +
1

2
ψ = θL − 1 + θLψ = θL − 1 + θH − 1 = 2(µ − 1) < 0,

since µ < 1.

Proof of Lemma 3. To make notation simpler, denote ℓ
jk
i = ℓi(sj, sk) for j, k ∈ {L, H}. For use
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throughout this appendix, let us write out first-order conditions for leniency (for given v).

ℓ
LL
1 : θL −

1

2
− 1

2
τ +

(

θL −
1

2

)

ψ1 −
1

2
ψ2 S 0, (25)

ℓ
LH
1 : θL −

1

2
− 1

2
τ +

(

θL −
1

2

)

ψ1 +
1

2
ψ2 S 0, (26)

ℓ
HL
1 : θH − 1

2
− 1

2
τ −

(

θL −
1

2

)

ψ1 −
1

2
ψ2 S 0, (27)

ℓ
HH
1 : θH − 1

2
− 1

2
τ −

(

θL −
1

2

)

ψ1 +
1

2
ψ2 S 0, (28)

ℓ
LL
2 : −1

2
+

(

θL −
1

2

)

τ − 1

2
ψ1 +

(

θL −
1

2

)

ψ2 S 0, (29)

ℓ
LH
2 : −1

2
+

(

θH − 1

2

)

τ − 1

2
ψ1 −

(

θL −
1

2

)

ψ2 S 0, (30)

ℓ
HL
2 : −1

2
+

(

θL −
1

2

)

τ +
1

2
ψ1 +

(

θL −
1

2

)

ψ2 S 0, (31)

ℓ
HH
2 : −1

2
+

(

θH − 1

2

)

τ +
1

2
ψ1 −

(

θL −
1

2

)

ψ2 S 0, (32)

where τ is the Lagrange multiplier on the promise-keeping constraint for local regulator two

and ψi is the multiplier on the incentive compatibility constraint for local regulator i = 1, 2.

We will compute the optimal allocation for v ∈ [v, v0], where the case v ∈ [v0, v̄] follows from

symmetry. P will be piece-wise linear with kinks vj, j = 0, 1, 2, and v2 < v1 < v0. Below we will

guess and verify optimal leniency that attains P(v) for each v ∈ [v, v0].

For v ∈ [v1, v0], we have that ℓLH
1 , ℓHL

1 , ℓLH
2 take interior values such that (26), (27) and (30)

hold with equality. The remaining first-order conditions yield corner solutions ℓLL
1 = ℓLL

2 =

ℓHL
2 = 0 and ℓHH

1 = ℓHH
2 = l. Both incentive compatibility constraints bind such that multipliers

are given by

τ = 2µ − 1, ψ1 =
σ2 − µ(1 − µ)

(µ − σ)(1 − µ + σ)
, ψ2 =

(2µ − 1)(σ2 + µ(1 − µ))

(µ − σ)(1 − µ + σ)
.

Note that ψ1 is strictly positive, since discretion matters (according to Assumption 2). To verify

that ℓHL
2 = 0, note that the left-hand side of (31), whenever the left-hand side of (26) is zero, can
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be written as θL(τ − 1)− (1 − θL)(ψ2 − ψ1) < 0.

The interior policies for a given v ∈ [v1, v0] are

ℓ
LH
1 = 4(v0 − v), ℓ

HL
1 =

1 − µ + σ

µ − σ
l + 4(v0 − v), ℓ

LH
2 =

1 − µ + σ

µ − σ
l.

We have ℓHL
1 = 1 at v = v1 where

v1 =
3σ − µ

4(µ − σ)
l.

Note that v1 can be either positive or negative. In the former case, we are interested in

v ∈ [0, v1) as well. Then ℓLH
1 , ℓLH

2 take interior values such that (26) and (30) hold with equality.

The remaining first-order conditions yield corner solutions ℓLL
1 = ℓLL

2 = ℓHL
2 = 0 and ℓHL

1 =

ℓHH
1 = ℓHH

2 = l. Only the second local regulator’s incentive compatibility constraint binds such

that multipliers are given by

τ = 2µ − 1 − σ2 − µ(1 − µ)

σ
, ψ1 = 0, ψ2 =

σ2 + µ(1 − µ)

σ
,

where it is easy to verify that τ ∈ (0, 1). We have ℓHL
2 = 0 for the same reason as above, since

again ψ2 − ψ1 > 0. To see that ℓHL
1 = l, note that the left-hand side of (27), whenever the

left-hand side of (26) is zero, can be written as θH − θL − ψ2 = (σ2 − µ(1 − µ))/σ > 0.

The interior policies for a given v ∈ [v2, v1] are

ℓ
LH
1 = (2(µ − σ)− 1)

4v + l

2σ
, ℓ

LH
2 =

4v + (1 − 2σ)l

2σ
.

Note that both are decreasing as v decreases; however, ℓLH
1 > 0 throughout, such that local

regulator one will still engage in state-contingent socially wasteful leniency. We have ℓLH
2 = 0 at

v = v2, but this value does not satisfy Assumption 1, since

v2 = −1 − 2σ

4
l < 0.
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Thus, as v decreases in [0, v0], we have ℓHL
1 increasing, ℓLH

1 > 0, and ℓLH
2 non-increasing, when-

ever discretion matters (in the sense of Assumption 2).

Proof of Lemma 4. When 3σ − µ ≤ 0, then v1 in the proof of Lemma 3 is negative. According to

Assumption 1, it follows that second-period welfare of any local regulator must be larger than

v1. However, average leniency across local regulators is then uniformly higher when v 6= v0

compared with the case where v = v0, and strictly higher in states where local regulators

receive different preference shocks. It follows that expected leniency is strictly higher when

v 6= v0 compared with the case where v = v0.

Proof of Lemma 5. To see that the constrained optimization problem is convex, note that the ob-

jective is linear and that the non-linear constraints can be written as

v1(s1, s2)− P(v2(s1, s2)) ≤ 0, (s1, s2) ∈ S2,

where the left-hand side is convex whenever P is concave in v2. To see that P is concave, note

that we can use the results from the proof of Lemma 3 to define P as

P(v) =















v0 − τ0(v − v0) if v ∈ [v1, v0]

P(v1)− τ1(v − v1) if v ∈ [v2, v1),

where

τ0 = 2µ − 1, τ1 = 2µ − 1 − σ2 − µ(1 − µ)

σ
, v1 =

3σ − µ

4(µ − σ)
l, and, v2 = −1 − 2σ

4
l.
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Due to symmetry in the first period, the first-order conditions for leniency look almost the

same as in the proof of Lemma 2:

ℓ1(sL, sL) : − (1 − θL)(1 + ψ) < 0,

ℓ1(sL, sH) : θL − 1 + θLψ < 0,

ℓ1(sH , sL) : θH − 1 − θLψ ≥ 0,

ℓ1(sH , sH) : θH − 1 + (1 − θL)ψ > 0,

where ψ = 0 if (13) is slack (or equivalently if (14) is slack). Note that ψ is the Lagrange

multiplier on either incentive compatibility constraint. The second line is implied by the third,

since µ < 1. If the third line would not hold, then ℓ1(sH , sL) = 0 such that ψ = 0 (but then

ℓ1(sH, sL) should be increased, a contradiction). Hence, we know that ψ ≤ θH−1
θL

.

Ignoring feasibility, the first-order effect of vj(sL, sL) is δ
4(1 + ψ), which is positive. But then

v1(sL, sL) = P(v2(sL, sL)) = v0. Similarly, ignoring feasibility, the first-order effect of vj(sH , sH)

is δ
4(1 − ψ), which is positive, since ψ < 1. But then v1(sH, sH) = P(v1(sH, sH)) = v0 as well.

Simplifying notation slightly, we can write (13) as

ℓ
HL
1 = min

{

l,
1 − θL

θL
l +

δ

θL

(

vLH
1 − vHL

1

)

}

.

Ignoring feasibility, the first-order effects of vLH
1 and vHL

1 are δ
4(1+ψ) and δ

4(1−ψ), respectively.

Both are positive such that, using symmetry, vLH
1 = P

(

vLH
2

)

= P
(

vHL
1

)

and vHL
1 = P

(

vHL
2

)

=

P
(

vLH
1

)

. Hence, we know that second-period welfare pairs are always on the Pareto frontier.

Finally, we need to show that ∆v ≡ vLH
1 − vHL

1 > 0 at the optimum. At vHL
1 = vLH

1 = v0,

suppose we reduce vHL
1 by a small dv > 0; then ∆v =

(

−P′ (vHL
1

)

+ 1
)

dv. The effect on first-

period welfare per local regulator is

∆W =
1

4

[

(θH − 1)
δ

θL
∆v + δ

(

−P′
(

vHL
1

)

− 1
)

dv

]

=
δ

4θL

[

−(2µ − 1)P′
(

vHL
1

)

− (1 − 2σ)
]

dv.

45



For dv < vHL
1 − v1, we have −P′ (vHL

1

)

= τ0 = 2µ − 1 such that ∆W = δ
2θL

(σ − 2µ(1 − µ)) dv >

δ
2θL

σ(1 − 2σ), which is positive, then ∆v > 0 at an optimum such that local regulators’ second-

period welfare will be varied to increase discretion in period one (ℓHL
1 is higher than the value

in the allocation in Lemma 2).

Proof of Lemma 7. We first show that T maps C(V) into itself. That T f is decreasing follows from

the promise-keeping constraint (17). T f is continuous according to Corollary 5 in Milgrom and

Segal (2002). To see that T f is concave, take any v′0, v′′0 ∈ V, α ∈ (0, 1). Denote the corresponding

policy rules and continuation payoffs by ℓ′1, ℓ′2, v′1, v′2 and ℓ′′1 , ℓ′′2 , v′′1 , v′′2 . respectively. While the set

of incentive-compatible allocations is generally not convex, we can construct alternative policies

and continuation payoffs ℓa
1, ℓa

2, va
1, va

2, which satisfy (17)-(20) for v0 = αv′0 + (1 − α)v′′0 , as follows:

u(ℓa
1(θi, θj), θi)−

1

2
ℓ

a
2(θi, θj) = α

[

u(ℓ′1(θi, θj), θi)−
1

2
ℓ
′
2(θi, θj)

]

+ (1 − α)

[

u(ℓ′′1 (θi, θj), θi)−
1

2
ℓ
′′
2 (θi, θj)

]

,

u(ℓa
2(θi, θj), θj)−

1

2
ℓ

a
1(θi, θj) = α

[

u(ℓ′2(θi, θj), θj)−
1

2
ℓ
′
1(θi, θj)

]

+ (1 − α)

[

u(ℓ′′2 (θi, θj), θj)−
1

2
ℓ
′′
1 (θi, θj)

]

,

ℓ
a
k(θi, θj) > αℓ′k(θi, θj) + (1 − α)ℓ′′k (θi, θj), k = 1, 2,

va
k(θi, θj) = αv′k(θi, θj) + (1 − α)v′′k (θi, θj), k = 1, 2.

The alternative allocation satisfies (17) for v0 = αv′0 + (1 − α)v′′0 and, since f is concave, it also

satisfies (20). To see that (18), evaluated at the alternative allocation, holds, note that

1

N ∑
θj∈Θ

[

u(ℓa
1(θi, θj), θi)− u(ℓa

1(θi+1, θj), θi)−
1

2
(ℓa

2(θi, θj)− ℓ
a
2(θi+1, θj)) + δ(va

1(θi, θj)− va
1

(

θi+1, θj)
)

]

≥ 1

N ∑
θj∈Θ

(θi+1 − θi)
[

ν(la
1(θi+1, θj))− αν(l′1(θi+1, θj))− (1 − α)ν(l′′1 (θi+1, θj))

]

> 0,

where the first inequality follows from the fact that (18) holds for allocations ℓ′1, ℓ′2, v′1, v′2 and

ℓ′′1 , ℓ′′2 , v′′1 , v′′2 , respectively, and by construction of the alternative allocation, and the second in-

equality follows by construction of the alternative allocation and the fact that ν is increasing and

convex. A similar argument shows that (19) is strictly slack evaluated at the alternative alloca-
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tion. However, then (T f )(αv′0 + (1 − α)v′′0 ) ≥ α(T f )(v′0) + (1 − α)(T f )(v′′0 ) and this inequality

can be made strict since (18) and (19) are strictly slack when evaluated at the alternative allo-

cation (the alternative allocation can be strictly improved upon). Hence T f is (strictly) concave

and T : C(V) → C(V).

To see that T is a contraction, note that T f ≤ Tg whenever f ≤ g and that, since (20)

always binds, T( f + c) = T f + δc for c ∈ R+, where δ < 1. Suppose (20) does not bind for

some (θi, θj) such that v1(θi, θj) < f (v2(θi, θj)), then the first-order optimality conditions for

v1(θi, θj), v2(θi, θj) and c1(θi, θj) yield
(

u′(ℓ1(θi, θj), θi)− u′(ℓ1(θi, θj), θi−1)
)

ψ1(θi−1) = 0, where

ψ1 is the Lagrange multiplier on (18). Since there is a unique finite bliss point ℓ∗1(θi′) for each

i′ = 1, 2, . . . , N and θi > θi−1, it must be the case that ψ1(θi−1) = 0, and a similar argument

shows that ψ2(θj−1) = 0. However, v1(θi, θj) and v2(θi, θj) should then be as high as possible

from the first-order conditions for v1 and v2. Hence, v1(θi, θj) = f (v2(θi, θj)) for all (θi, θj).

Note that (C(V), ‖·‖∞), with ‖ f‖∞ = supv∈V | f (v)|, is a complete metric space such that T

has a unique fixed point P. Note that P is strictly concave since T f is strictly concave for any

f ∈ C(V) (see Corollary 1 on page 52 in Stokey and Lucas, 1989). To establish differentiability,

note that the set of maximizers (and multipliers) generated by (TP)(v0) is a singleton for each

v0 due to strict concavity of u and P. The directional derivatives given by corollary 5 in Milgrom

and Segal (2002) then coincide.16 Hence, P is continuously differentiable on intV.

The Pareto set is self-generating since (20) binds strictly for any f ∈ C(V)).

Lemma 9. Local regulators report shocks truthfully as long as the inequalities (18) and (19) are satisfied

if local regulator leniency is increasing in the local shock.

Proof of Lemma 9. Local regulator one with parameter θi cannot benefit from reporting θi−1 in-

stead if the following expression is positive:

1

N ∑
θj∈Θ

[

u(ℓ1(θi, θj), θi)−
1

2
ℓ2(θi, θj) + δv1(θi, θj)

]

− 1

N ∑
θj∈Θ

[

u(ℓ1(θi−1, θj), θi)−
1

2
ℓ2(θi−1, θj) + δv1(θi−1, θj)

]

16Since there is no enforcement problem in the setup considered the regularity condition of the corollary
(non-empty interior of the constraint set at every v0 ∈ intV) is always satisfied. See Kocherlakota (1996)
for a setup where this is not the case.
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Since (18) is satisfied with equality, the expression can be written as

1

N ∑
θj∈Θ

(

θi − θi−1)(ℓ1(θi, θj)− ℓ1(θi−1, θj)
)

,

which is positive for ℓ1 increasing in the shock experienced by regulator one. A similar argument

applies to the case of local regulator two.

Iterate on (18) to see that local regulator one with parameter θi cannot benefit from reporting

θi+k instead, with i + k ≤ N, whenever ℓ1 is increasing in the shock experienced by regulator

one.

Proof of lemma 8. From (21) we have that

1

2

[

τ + ψ2(θj)− ψ2(θj−1)
]

> u′(ℓ1(θi, θj), θi) [1 + ψ1(θi)− ψ1(θi−1)]

since marginal utilities are strictly increasing in the parameter. Similarly, from (22) we obtain

1

2
[1 + ψ1(θi)− ψ1(θi−1)] > u′(ℓ2(θi, θj), θj)

[

τ + ψ2(θj)− ψ2(θj−1)
]

.

Substituting the second into the first inequality and rearranging yields the first result. The

second result follows from conditions (23) and (24) and the fact that local regulators are ex ante

identical.

Assume that ℓ1(θi, θj) ≤ ℓ1(θi, θj+1). Suppose v2(θi, θj) < v2(θi, θj+1), then −P′(v2(θi, θj)) <

−P′(v2(θi, θj+1)) and therefore ψ2(θj)− ψ2(θj−1) < ψ2(θj+1)− ψ2(θj). It follows that

u′(ℓ1(θi, θj), θi) [1 + ψ1(θi)]− u′(ℓ1(θi, θj), θi−1)ψ1(θi−1)

< u′(ℓ1(θi, θj+1), θi) [1 + ψ1(θi)]− u′(ℓ1(θi, θj+1), θi−1)ψ1(θi−1)

⇔
[

u′(ℓ1(θi, θj), θi)− u′(ℓ1(θi, θj+1), θi)
]

[1 + ψ1(θi)]

[

u′(ℓ1(θi, θj), θi−1)− u′(ℓ1(θi, θj+1), θi−1)
]

ψ1(θi−1).
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This expression can be simplified as follows.

[

ν′(ℓ1(θi, θj))− ν′(ℓ1(θi, θj+1))
]

θi [1 + ψ1(θi)] <
[

ν′(ℓ1(θi, θj))− ν′(ℓ1(θi, θj+1))
]

θi−1ψ1(θi−1)

Since 1 + ψ1(θi)− ψ1(θi−1) > 0, the expression yields a contradiction for ℓ1(θi, θj) ≤ ℓ1(θi, θj+1).

Hence, v2(θi, θj) ≥ v2(θi, θj+1). Assume now conversely that v2(θi, θj) ≥ v2(θi, θj+1). Then

u′(ℓ1(θi, θj), θi) [1 + ψ1(θi)]− u′(ℓ1(θi, θj), θi−1)ψ1(θi−1)

≥ u′(ℓ1(θi, θj+1), θi) [1 + ψ1(θi)]− u′(ℓ1(θi, θj+1), θi−1)ψ1(θi−1)

and

[

ν′(ℓ1(θi, θj))− ν′(ℓ1(θi, θj+1))
]

θi [1 + ψ1(θi)] ≥
[

ν′(ℓ1(θi, θj))− ν′(ℓ1(θi, θj+1))
]

θi−1ψ1(θi−1),

such that ℓ1(θi, θj) > ℓ1(θi, θj+1) cannot be the case and therefore ℓ1(θi, θj) ≤ ℓ1(θi, θj+1). This

proves the third result. The fourth result is proved similarly.

If v2(θi, θj) > v̂ then −P′(v2(θi, θj)) > 1 and

u′(ℓ1(θi, θj), θi) [1 + ψ1(θi)]− u′(ℓ1(θi, θj), θi−1)ψ1(θi−1)

> u′(ℓ2(θi, θj), θj)
[

τ + ψ2(θj)
]

− u′(ℓ2(θi, θj), θj−1)ψ2(θj−1) ≥ u′(ℓ2(θi, θj), θj)
[

τ + ψ2(θj)− ψ2(θj−1)
]

.

Suppose u′(ℓ2(θi, θj), θj) >
1
2 ; then

u′(ℓ1(θi, θj), θi) [1 + ψ1(θi)]− u′(ℓ1(θi, θj), θi−1)ψ1(θi−1)

>
1

2

[

τ + ψ2(θj)− ψ2(θj−1)
]

= u′(ℓ1(θi, θj), θi) [1 + ψ1(θi)]− u′(ℓ1(θi, θj), θi−1)ψ1(θi−1).

This expression yields a contraction such that u′(ℓ2(θi, θj), θj) ≤ 1
2 . The case for local regulator

one is proved similarly. This proves the fifth result.
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