
Reserve Requirements and Optimal Chinese Stabilization Policy¹

Chun Chang¹ Zheng Liu² Mark M. Spiegel² Jingyi Zhang¹

¹Shanghai Jiao Tong University, ²FRB San Francisco

2nd Ann. Bank of Canada U of Toronto Conference on the Chinese Economy Toronto, October 20-21, 2016

The PBOC frequently adjusts reserve requirements (RR)

- Since 2005, adjusted RR 40 times
- ▶ Between 2006 and 2011, RR rose from 8.5% to 21.5%

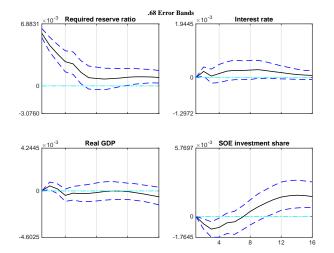
・ロト ・日子・ ・日下・ ・

RR play a role in managing external imbalances in China

- Mop up foreign exchange reserves under closed capital account (Ma, et al. (2013))
- Cheaper alternative to sterilization since global financial crisis (e.g., Chang, Liu, and Speigel (2015))
- May therefore be understood as an expedient way for alleviating inflation pressures while reducing sterilization cost

RR increases encourage shadow banking activity

- Shadow bank lending increased over 30% per year between 2009 and 2013
 - Unregulated, kept off of banks' balance sheet (e.g., wealth management products)
 - Reduces costs of financial services but increases financial risks [Gorton and Metrick (2010), Elliott, et al (2015)]
- Shadow banking expansions attributable to tightened banking regulations (Elliott, et al (2015); Hachem and Song (2016); Chen, Ren, and Zha (2016))
 - binding loan/deposit caps
 - Interest rate controls
 - Increases in RR (only affect formal banking)


Impact of RR on financing costs affects resource allocations

- RR act as a tax on commercial banks
- Disproportionately affects State-owned enterprises (SOEs)
 - SOEs enjoy implicit government guarantees on loans
 - Superior access to bank loans despite lower average productivity
- Shadow banking not subject to RRs
 - Main source of financing for privately-owned enterprises (POEs) (Lu, et al. (2015))
- \blacktriangleright \uparrow RRs reallocates resources from SOEs to POEs
 - Reduces SOE activity relative to POE
 - ▶ POEs have higher average productivity (Hsieh-Klenow, 2009)
 - ► Thus, raising RR increases aggregate TFP

Illustrative macro evidence of RR's reallocation effects

- Simple BVAR with RR, 3-mo deposit rate, log real GDP, SOE investment share
- Data 1995:Q1 to 2013:Q4
- 4-qtr lags with Sims-Zha priors
- Ordering implies RR responds to all shocks in impact period
 - Results show positive shock to RR reduces SOE investment share
 - Increase in GDP surprising, but possible due to increased TFP
- Results robust to RR being ordered last

BVAR: \uparrow RR reallocates investment away from SOEs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Corroborating micro evidence of RR's reallocation effects

- Do RR increases reduce SOE stock returns relative to POE?
- Consider regression model:

$$\sum_{h=-H}^{H} R_{j,t+h}^{e} = a_0 + a_1 R R_{t-1} + a_2 SOE_{jt} \times R R_{t-1} + a_3 SOE_{jt} + bZ_{jt} + \varepsilon_{jt}$$

where $R_{j,t+h}^e = R_{j,t+h} - \hat{\beta}_j R_{m,t+h}$ denotes risk-adjusted excess return, RR_{t-1} denotes changes in RR, and Z_{jt} is a vector of controls (size, book-to-market, industry fixed effects, year fixed effects)

- ▶ Focus on *relative* effects on SOEs (a₂ < 0?)</p>
- Daily data for non-financial firms listed on Shanghai/Shenzhen stock exchanges, 2005-2015
- Identification: event study of RR announcement effects

RR announcements effects on stock returns

1-day (H=0)	3-day (H=1)	5-day (H=2)
0.00206	0.00479	0.01057
(7.20)	(9.21)	(15.74)
-0.0012	-0.00225	-0.00442
(-3.21)	(-3.32)	(-5.05)
-0.00007	-0.00026	-0.00041
(-2.60)	(-5.29)	(-6.47)
-0.00034	-0.00099	-0.00155
(-27)	(-43)	(-53)
0.00009	0.00024	0.00047
(2.22)	(3.29)	(4.96)
4119971	4079847	4000353
0.00071	0.00182	0.00288
	0.00206 (7.20) -0.0012 (-3.21) -0.00007 (-2.60) -0.00034 (-27) 0.00009 (2.22) 4119971	$\begin{array}{c cccc} 0.00206 & 0.00479 \\ (7.20) & (9.21) \\ \hline \end{tabular} -0.0012 & -0.00225 \\ (-3.21) & (-3.32) \\ -0.00007 & -0.00026 \\ (-2.60) & (-5.29) \\ -0.00034 & -0.00099 \\ (-27) & (-43) \\ 0.00009 & 0.00024 \\ (2.22) & (3.29) \\ 4119971 & 4079847 \end{array}$

9/44

What we do

- Build a DSGE model with financial frictions and Chinese characteristics to study:
 - 1. implications of RR policy for allocation efficiency, aggregate productivity, and social welfare
 - 2. role of RR policy in stabilizing business cycle fluctuations
 - 3. optimal RR under simple policy rules and interactions with interest-rate policy

Two sector DSGE model

- State-owned enterprises (SOEs) and privately-owned enterprises (POEs)
 - Identical ex ante production technology, POEs have higher average productivity
 - Both sectors require financing for working capital
 - Follow BGG (1999) framework
 - Costly state verification induces financial friction
- SOEs enjoy superior access to commercial bank borrowing
 - Stems from implicit guarantees
- Private firms finance working capital with shadow banks

Creditors specialize in lending activity

- Conventional commercial banks
 - Specialize in lending to SOEs
 - Subject to government reserve requirements
 - Government guarantee on SOE debt
 - Underfunded SOEs are liquidated, but government pays lender to make up loan losses
 - SOE bankruptcy still incurs monitoring costs, as in BGG
- Informal shadow banks
 - Specialize in lending to POEs
 - Exempt from RR regulation and receive no government guarantees
 - If POE underfunded, undergoes costly liquidation
- Complete separation in financial activity assumed for simplicity, but captures reality

Allocative and welfare implications of RR policy

- Raising RR improves aggregate productivity
 - Adversely impacts SOE sector dependent on bank finance
 - Diverts resources to POE sector
 - Raises aggregate productivity (since POE productivity higher)
- Welfare outcomes unclear
 - \blacktriangleright Higher incidence of SOE bankruptcies \rightarrow higher bailout costs
 - Ambiguity surprising given productivity advantage of POEs

Compare stabilizing performances of interest rate and reserve requirement policy rules

Can't solve Ramsey, so concentrate on simple policy rules

- Coefficients chosen to maximize household welfare
- Tradeoff between reallocating resources from SOEs to POEs and social default costs
- Results
 - Interest rate rule more effective for stabilizing inflation and output
 - RR rule more effective for reallocating resources
 - Welfare substantially higher when optimize over both rules

Households (1)

Representative household utility function

$$U = \operatorname{E} \sum_{t=0}^{\infty} \beta_t \left[\ln(C_t) - \Psi \frac{H_t^{1+\eta}}{1+\eta} \right],$$

Imperfect mobility of labor across sectors

$$H_t = (\mu H_{s,t}^{1+\sigma_L} + (1-\mu) H_{p,t}^{1+\sigma_L})^{\frac{1}{1+\sigma_L}}$$

where H_s and H_p denote labor supplied to SOEs and POEs, respectively

Households (2)

Budget constraints

$$C_{t} + I_{t} + \frac{D_{st} + D_{pt}}{P_{t}} = w_{st}H_{st} + w_{pt}H_{pt} + r_{t}^{k}K_{t-1}$$
$$+ R_{t-1}\frac{D_{s,t-1} + D_{p,t-1}}{P_{t}} + T_{t}$$

where I_t is capital investment, D_{st} and D_{pt} deposits in banks and nonbanks, and T_t lump-sum transfers

Capital accumulation with adjustment costs (CEE 2005)

$$K_t = (1-\delta)K_{t-1} + \left[1 - \frac{\Omega_k}{2}\left(\frac{I_t}{I_{t-1}} - g_I\right)^2\right]I_t,$$

<ロト < 部ト < 国ト < 国ト 目 の Q (C) 16 / 44

Retail sector

- ► Final good Y^f CES composite of differentiated retail products
- Each retailer is price-taker in input markets and monopolistic competitor in product markets
- Demand curve facing each retailer

$$Y_t(z) = \left(\frac{P_t(z)}{P_t}\right)^{-\epsilon} Y_t^f$$

- Retailer takes demand schedule as given and sets price $P_t(z)$
- Quadratic price adjustment costs as in Rotemberg (1982)

$$\frac{\Omega_p}{2} \left(\frac{P_t(z)}{\pi P_{t-1}(z)} - 1 \right)^2 C_t$$

17 / 44

Intermediate goods

- Two sectors: j = p for POE and j = s for SOE
- Production function for sector-j firm:

$$Y_{jt} = A_t \bar{A}_j \omega_{jt} K_{jt}^{1-\alpha} \left[(H_{jt}^e)^{1-\theta} H_{jt}^\theta \right]^\alpha$$

- ▶ where K_j = capital, H_j = household labor, H^e_j = managerial labor
- ► ω_{jt} ~ F_{jt}(·) idiosyncratic productivity shock, realized after production and freely observable only to firm
- ► A_t = aggregate productivity shock; Ā_j = scale of TFP in sector-j (a constant)

Financial frictions

- ▶ Firms finance working capital with net worth N_{j,t-1} and external debt B_{jt} (BGG)
- Working capital constraint satisfies

$$\frac{N_{j,t-1}+B_{jt}}{P_t} = w_{jt}H_{jt} + w_{jt}^eH_{jt}^e + r_t^kK_{jt}$$

where w^e_{jt} is the real wage rate of managerial labor
Constant returns implies that revenue linear in net worth

$$\frac{Y_{jt}}{x_t} = \tilde{A}_{jt} \omega_{jt} \frac{N_{j,t-1} + B_{jt}}{P_t}$$

where ω_{jt} denotes idiosyncratic productivity and \tilde{A}_{jt} is rate of return on firm investment (in consumption units)

Defaults

- Firms default when they are unable to pay their debts
- Occurs if realized productivity ω_{jt} sufficiently low:

$$\omega_{jt} < ar{\omega}_{jt} \equiv rac{Z_{jt}B_{jt}}{ ilde{A}_{jt}(N_{j,t-1}+B_{jt})}$$

where $Z_{j,t}$ is contractual rate of interest

- If firm defaults, liquidated by lender with fraction m_{jt} lost output
- Government covers SOE (not POE) loan losses using lump sum taxes

Financial intermediaries

Commercial banks:

- ► Take deposits from household at rate *R_t*, subject to RR
- Government guarantees imply risk-free loan rate R_{st} for SOEs

$$(R_{st}-1)(1-\tau_t)=(R_t-1).$$

RR drives wedge between loan and deposit rate

- Shadow banks:
 - Not subject to RR, $R_{pt} = R_t$
 - No government guarantees on POE debt ⇒ default premium over funding cost (i.e., credit spread) on private loans

Financial contracts

• Optimal financial contract is a pair $(\bar{\omega}_{jt}, B_{jt})$ that solves

$$\max ilde{A}_{jt}(N_{j,t-1}+B_{jt})f(\overline{\omega}_{jt})$$

subject to the lender's participation constraint

$$ilde{A}_{jt}(N_{j,t-1}+B_{jt})g(\overline{\omega}_{jt})\geq R_{jt}B_{jt}$$

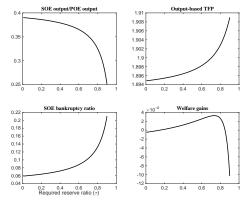
where B_{jt} denotes loan amount and $\bar{\omega}_{jt}$ is cutoff productivity for firm solvency

Defaults socially costly:

$$f(\overline{\omega}_{jt}) + g(\overline{\omega}_{jt}) = 1 - m_{jt} \int_0^{\overline{\omega}_{jt}} \omega dF(\omega) + l_j \int_0^{\overline{\omega}_{jt}} [\overline{\omega}_{jt} - (1 - m_{jt})\omega] dF(\omega)$$

where $l_s = 1$ and $l_p = 0$ are fractions of government guarantees

Monetary policy

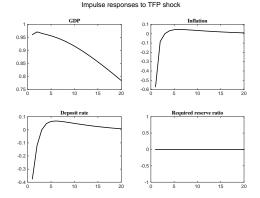

- Two instruments for monetary policy: deposit rate and RR
 - Consider two types of simple (Taylor-like) policy rules
 - Interest rate rule

$$\ln\left(\frac{R_t}{R}\right) = \psi_{rp} \ln\left(\frac{\pi_t}{\bar{\pi}}\right) + \psi_{ry} \ln\left(\frac{GDP_t}{GDP_{t-1}g}\right)$$

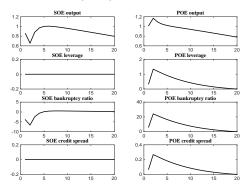
Reserve requirement rule

$$\ln\left(\frac{\tau_t}{\tau}\right) = \psi_{\tau p} \ln\left(\frac{\pi_t}{\bar{\pi}}\right) + \psi_{\tau x} \ln\left(\frac{GDP_t}{GDP_{t-1}g}\right)$$

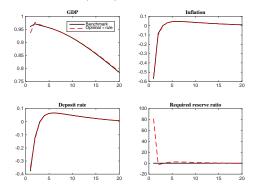
Steady state impact of RR increase

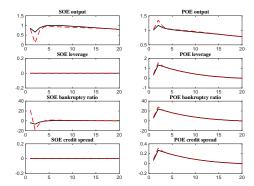

- Reallocation from SOE to POE improves TFP
- Higher funding costs increase SOE bankruptcies
- ► Tradeoff \Rightarrow interior optimum $\tau^* = 0.73$ under our calibration

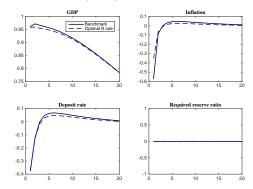
24 / 44

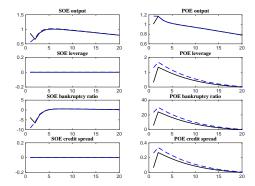

Compare macro stability and welfare under 4 policy rules

- ▶ Benchmark policy: Taylor rule with $\psi_{rp} = 1.5$ and $\psi_{ry} = 0.5$ and constant τ
- Optimal interest-rate rule: ψ_{rp} and ψ_{ry} set optimally to max welfare, and τ kept constant
- Optimal reserve-requirement rule: ψ_{τp} and ψ_{τy} set optimally, Taylor rule coefficients kept at benchmark values
- Jointly optimal rule: Coefficients for both interest rates and reserve requirements set optimally
- Consider 2 shocks: TFP and government spending


Aggregate Responses to TFP Shock: Benchmark


Sectoral responses to TFP shock: Benchmark


Aggregate Responses to TFP Shock: Benchmark vs optimal $\boldsymbol{\tau}$

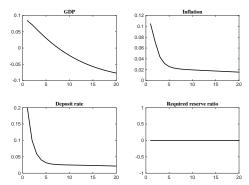

Sectoral responses to TFP shock: Benchmark vs optimal au

Aggregate Responses to TFP Shock: Benchmark vs optimal ${\it R}$

Sectoral responses to TFP shock: Benchmark vs optimal R

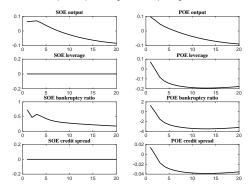
Macro stability and welfare under alternative rules

Variables	Benchmark	Optimal $ au$ rule	Optimal R rule	Jointly optimal rule	
Policy rule coefficients					
ψ_{rp}	1.50	1.50	1.93	1.51	
ψ_{ry}	0.50	0.50	0.32	-0.14	
$\psi_{\tau \rho}$	0.00	374	0.00	232	
$\psi_{\tau \gamma}$	0.00	417	0.00	-913	
Macro Volatility					
GDP	5.360%	5.384%	5.329%	5.335%	
π	0.624%	0.604%	0.385%	0.406%	
С	5.088%	5.085%	5.056%	5.057%	
Н	0.803%	0.776%	0.848%	0.905%	
R	0.543%	0.530%	0.488%	0.734%	
Welfare gains relative to benchmark					
C equivalent	—	0.019%	0.023%	0.493%	


Jointly optimal rule allows for complementary use of policy tools

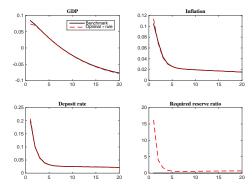
- Adjust *R*-rule to stabilize inflation and GDP
- ► Adjust *τ*-rule to achieve desired reallocation of resources across sectors
- \blacktriangleright $\tau\text{-rule}$ also used to stabilize financial accelerator effects on POEs
- ► Leads to higher welfare gains than each individually optimal rule ⇒ the two policy instruments are complementary

Conclusion

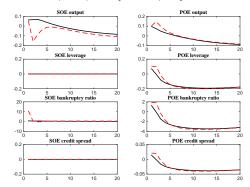

- Examine RR policy in DSGE model with BGG financial accelerator and Chinese characteristics
- Changes in RR incur tradeoff between allocation efficiency and bankruptcy costs
- Reserve requirements and interest rates are complementary policy instruments
 - Interest rate effective for macro stabilization
 - ▶ RR more useful for improving allocation efficiency and welfare
- Caveats:
 - Results are "second-best"
 - May change with opening to global capital markets

Aggregate responses to govt spending shock: Benchmark

Impulse responses to government spending shock

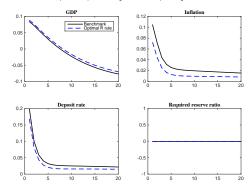

Sectoral responses to government spending shock: Benchmark

Impulse responses to government spending shock


Aggregate responses to Govt spending Shock: Benchmark vs optimal $\boldsymbol{\tau}$

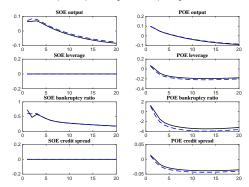
Impulse responses to government spending shock

Sectoral responses to government spending shock: Benchmark vs optimal $\boldsymbol{\tau}$


Impulse responses to government spending shock

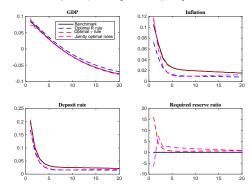
・ロ ・ ・ 日 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ つ へ (* 38 / 44

Aggregate responses to govt spending shock: Benchmark vs optimal R

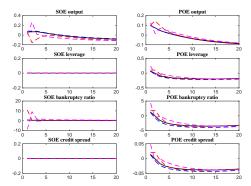

Impulse responses to government spending shock

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sectoral responses to government spending shock: Benchmark vs optimal R

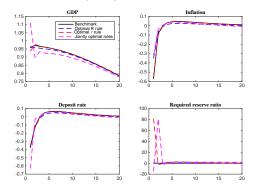

Impulse responses to government spending shock

・ロト <
同 ト <
言 ト <
言 ト 、
言 や へ
の へ
40 / 44
</p>

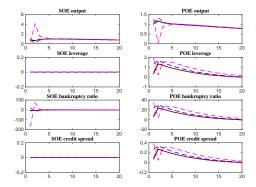

Aggregate responses to govt spending shock: Benchmark vs. alt policy rules

Impulse responses to government spending shock

・ロト <
同 ト <
言 ト <
言 ト 、
言 や へ
の へ
・ 41 / 44
</p>


Sectoral responses to govt spending shock: Benchmark vs. alt policy rules

Impulse responses to government spending shock


Aggregate Responses to TFP Shock: Benchmark vs. alternative policy rules

Impulse responses to TFP shock

・ロト < 回ト < 国ト < 国ト < 国ト 目 の Q (* 43 / 44
</p>

Sectoral responses to TFP shock: Benchmark vs. alternative policy rules

Impulse responses to TFP shock

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ
 < ○ Q ○
 44/44