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Abstract 

We introduce a new framework that facilitates term structure modeling with both positive 
interest rates and flexible time-series dynamics but that is also tractable, meaning 
amenable to quick and robust estimation. Using both simulations and U.S. historical data, 
we compare our approach with benchmark Gaussian and stochastic volatility models as 
well as a shadow rate model that enforces positive interest rates. Our approach, which 
remains arbitrarily close to arbitrage-free, offers a more accurate characterization of bond 
Sharpe ratios due to a better fit of the volatility dynamics and a more efficient estimation 
of the return dynamics. Further, standard shadow rate and stochastic volatility models 
exhibit important restrictions that are largely absent in our approach. 

JEL classification: G12 
Bank classification: Asset pricing; Interest rates; Transmission of monetary policy; 
Uncertainty and monetary policy; International topics; International financial markets 

Résumé 

Nous présentons un nouveau cadre qui facilite la modélisation de la structure par terme 
des taux d’intérêt en tenant compte à la fois des taux d’intérêt positifs et des dynamiques 
flexibles associées aux séries chronologiques. Ce cadre se distingue par sa maniabilité, à 
savoir qu’il produit rapidement des estimations robustes. En utilisant des simulations et 
les données historiques disponibles pour les États-Unis, nous comparons notre approche à 
celle de modèles de référence gaussiens ou à volatilité stochastique, mais aussi d’un 
modèle similaire à celui de Black (1995), qui impose une condition de taux d’intérêt 
positifs. Notre approche coïncide dans les grandes lignes avec celle de modèles imposant 
l’absence d’opportunités d’arbitrage, mais autorise une meilleure représentation des ratios 
de Sharpe obligataires, du fait que la dynamique de la volatilité est plus fidèlement 
reflétée et que la dynamique des rendements est estimée plus efficacement. Il faut 
également souligner que tous les modèles de référence que nous considérons comportent 
d’importantes restrictions qui sont essentiellement absentes de notre approche. 

Classification JEL : G12 
Classification de la Banque : Évaluation des actifs; Taux d’intérêt; Transmission de la 
politique monétaire; Incertitude et politique monétaire; Questions internationales; 
Marchés financiers internationaux 



1 Introduction

As interest rates remain at or below zero in the face of persistent unconventional monetary

policy in many industrialized countries, the need for a tractable term structure model — one

that is amenable to quick and robust estimation — that can accommodate the near lower

bound behavior of interest rates is stronger than ever before. Despite its practical importance

even after years at the lower bound, characterizing bond risks and returns remains vexing.

Unfortunately, existing bond pricing models that incorporate bounded interest rates (starting

with Black, 1995) suffer from intractable bond pricing, inflexible volatility dynamics, or both.

Our contribution is to offer a framework to build potentially non-linear models that are

tractable yet arbitrarily close to arbitrage-free.

Subjecting this framework to both realistic data simulations and U.S. historical data,

we find significant improvements relative to benchmark models along several important

dimensions. In a simulation environment, we show that our approach offers more accurate

characterizations of bond Sharpe ratios. By combining information on risks and returns,

Sharpe ratios are an important statistic to differentiate models on economic grounds. Second,

in U.S. historical data, we find that our tractable models offer yield and return forecasts

with the same or better accuracy than other benchmark models and improve yield volatility

forecasts. These results occur both away from and near the lower bound, as well as in both

in-sample and out-of-sample settings.

The elaborate simulation and out-of-sample evidence also provides valuable empirical

insights that are relevant for researchers, policy-makers, and portfolio managers alike. First,

researchers have long struggled to obtain an accurate decomposition of risk premia in terms

of prices and quantities of risk. It is well known that, even in normal times, many existing

models face a tension in simultaneously capturing both components accurately; this is

only more complicated during zero lower bound (ZLB) episodes. In its ability to capture

volatility dynamics without compromising the estimation of risk premia, our framework offers

a tractable avenue to overcoming this tension. Second, policy-makers are also interested in

the ability of a model to provide reliable forecasts of these components over multiple horizons

to better inform, for example, monetary policy and systemic risk analysis.

Finally, portfolio managers, particularly those with a large fraction of their portfolios

invested in U.S. Treasuries, will find value in a model that is able to provide reliable reward-

to-risk metrics such as the Sharpe ratio.1

1To provide an important example, we highlight the “official” foreign holdings of U.S. federal debt; roughly
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To guarantee tractability in pricing, we directly specify a recursive construction that

connects bond prices at successive maturities to a small set of state variables, consistent

with the pronounced evidence that bond yields are driven by a small number of factors. The

direct specification of bond prices that we employ is reminiscent of the dynamic Nelson-Siegel

approach (henceforth DNS, see Diebold and Li (2006)). While the DNS is nested in our

framework, we allow for a high degree of flexibility in modeling the time series dynamics

of the pricing factors, including stochastic volatility, along with nearly complete freedom in

modeling the short rate, including non-linear formulations that are consistent with a lower

bound.

Although the pricing functions are explicitly specified, we recover prices that remain

economically sensible. approach. One reason put forth in Christensen, Diebold, and Rude-

busch (2011) as to why DNS models are popular is that DNS bond prices appear to be

almost arbitrage-free even if they are not exactly free of arbitrage in a frictionless market

(Bjork and Christensen, 1999; Filipovic, 1999). We pursue this intuition formally for our

more general setting, showing that our broad family of models delivers bond prices that

are free of dominant trading strategies in the sense of Rothschild and Stiglitz (1970) and

Levy (1992). Intuitively speaking, the no-dominance property rules out almost all arbitrage

opportunities, and we show that any remaining bond trading arbitrage opportunities cannot

be self-financing and do not survive in the presence of non-zero short-selling costs. Overall,

this analysis suggests that the practical relevance of DNS models generalizes to our broader,

more flexible framework.

While our framework precludes dominant bond trading strategies under far more general

assumptions, we consider an example model that facilitates comparison with existing models.

Specifically, in the spirit of Black (1995) and Wu and Xia (2016), we impose a “hockey stick”-

like lower bound on interest rates. Second, we permit a multivariate conditional volatility

process similar in spirit to the multivariate volatility models introduced by Noureldin et al.

(2011). We show how to undo the non-linearity of this example model, typically a major

obstacle in estimation, and to take advantage of recent advances (see Joslin et al. (2011))

such that estimation is highly convenient, fast, and robust.

To benchmark performance, we include in our analysis three popular alternatives. First,

we consider the no-arbitrage affine Gaussian term structure model that does not allow for

$4 trillion in 2020 represents, in part, the foreign currency reserve portfolios of various central banks (U.S.
Treasury Bulletin). As these reserve portfolio managers face tight risk management restrictions that often
preclude credit risk or derivatives, they tend to rely on easy-to-implement term structure models to manage
their high-quality government debt duration risk exposures.
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a lower bound and features constant yield volatility. Second, we consider the no-arbitrage

shadow rate model in Black (1995) and Wu and Xia (2016) that enforces a lower bound

but also features essentially constant yield volatility away from the lower bound.2 Third,

we consider a standard no-arbitrage affine stochastic volatility model (Dai and Singleton,

2000) that does not facilitate a lower bound. Importantly, robust global estimates of all three

models can be obtained in a straightforward manner.

To compare Sharpe ratio estimates across our model and these benchmarks, we set up a

simulation environment where, in contrast to the case of historical data, the true conditional

Sharpe ratios are known. To generate simulations, we use a data generating process that

incorporates the salient features of the U.S. bond market data—such as an upward sloping

average yield curve, downward sloping average yield volatility, predictable bond excess returns,

time-varying volatility—that includes episodes at the lower bound toward the end of each

sample. The results show that our approach offers a more accurate characterization of bond

Sharpe ratios than the benchmark models.

One of the deeper insights from our results is that the Sharpe ratio estimates are more

accurate because the flexible volatility dynamics in our framework readily translate into

more accurate return forecasts (the numerator of the Sharpe ratio) which are due to the

econometric efficiency gained by the much-improved volatility forecasts (the denominator

of the Sharpe ratio). Another reason why our framework delivers more accurate Sharpe

ratios is that the standard shadow rate model exhibits a pattern of biases in return and

volatility forecasts that substantially aggravates the accuracy of bond and portfolio Sharpe

ratio estimates. Put differently, we document that a full no-arbitrage implementation of the

shadow rate model introduces a tension between returns and volatility forecasts. A related

tension is well known for models relying on square-root processes (Dai and Singleton, 2000;

Joslin and Le, 2021). Hence, one surprising finding is that both stochastic volatility and

Black shadow rate models suffer from tensions due to the no-arbitrage restrictions binding

the bond return and volatility dynamics, even if the exact nature of these tensions differs

across these two models.

Moving beyond the simulation setup, we fit the same models to the U.S. historical data,

in both full and out-of-sample contexts. Interestingly, we obtain pricing errors and yield

forecasts that are very similar, in a statistical sense, across candidate models (both near

2A rich literature provides accurate and tractable approximation schemes to easily estimate shadow rate
models with constant volatility. In particular, Krippner (2011), Priebsch (2013), Kim and Priebsch (2013)
and Wu and Xia (2016) provided early practical approximation schemes for the model in Black (1995) and
analyzed their accuracy.
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and away from the ZLB). In contrast to the simulation exercise, estimates of conditional

first moments may not allow for a clean separation of models in small samples, possibly

due to the near unit-root nature of bond yields. In sharp contrast, we do find that our

model offers a far better fit of yield volatilities, both in and out of sample (and near and

away from the ZLB). Of course, including flexible volatility dynamics contributes to the

improvement. For example, the benchmark no-arbitrage stochastic volatility model that we

consider offers, in some sub-samples at least, fairly competitive volatility forecasts. However,

as in our simulations, easing the tension between fitting yields and volatilities also plays

an important role. Despite some ability to forecast volatility, the benchmark no-arbitrage

stochastic volatility model fails to capture bond empirical risk premia dynamics on a real-time

basis; our preferred model does not suffer this limitation.

By way of comparison, it should also be noted that Engle, Roussellet, and Siriwardane

(2017) design an important extension of the dynamic Nelson-Siegel model tailored for long-

term scenario generation and forecasts. Their design incorporates a lower bound, time-varying

volatility and correlation, as well as regime changes that increase persistence. Our goal is

different. We provide a broad framework for tractable models precluding dominant bond

trading strategies across a rich set of dynamic specifications. Instead of long-horizon forecasts,

our empirical application focuses on conditional Sharpe ratio estimates.

Two other important papers combine time-varying volatility with a lower bound in no-

arbitrage models. Monfort et al. (2017) allow for a combination of stochastic volatility and

the lower bound for interest rates within the affine no-arbitrage framework. Filipovic, Larsson,

and Trolle (2017) introduce the class of linear-rational no-arbitrage models featuring several

realistic features. Each of these models requires a particular combination of state dynamics

and the pricing kernel to deliver analytical bond prices. Importantly, they often rely on

filtering and estimation procedures, including possibly using auxiliary financial market data,

that can be computationally challenging to implement in practical day-to-day applications.

Finally, a substantial body of work uses no-arbitrage shadow rate models to study bond

yields and bond risk premia.3 Without exception, this stream of literature relies on constant

variances and correlations for the risk factors. However, studying the risk premium and

volatility jointly has become more important given how pervasive the lower bound has

become. As Bauer and Rudebusch (2016) note, the boundary introduces an asymmetry in

the relationship between bond yields and bond risk factors, implying that the bond volatility

3Important examples include Kim and Singleton (2012), Bauer and Rudebusch (2016), Christensen and
Rudebusch (2014), Krippner (2013), Wu and Xia (2016), and Priebsch (2013).
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influences many important model forecasts. Recognizing this issue, Cieslak and Povala (2016)

end their sample in 2010 before long-term yields, burdened by the tightness of the boundary,

become less sensitive to news (Bauer and Rudebusch, 2016; Swanson and Williams, 2014).

Similarly, Creal and Wu (2015) introduce time-varying macroeconomic uncertainty but end

their sample in mid-2012. Both models do not prevent negative yields.

2 Tractable Dynamic Term Structure Models

This section introduces a new family of dynamic term structure models in which bond

prices are specified directly, guaranteeing that bond yields are available in closed form with

only minimal assumptions about the risk factor dynamics. In particular, we specify the

relation between bond prices and the state vector, along with the associated state dynamics,

in a way that bond yields are free of dominant trading strategies (which we will explain).

Our framework admits as a special case the popular dynamic Nelson-Siegel approach of

Diebold and Li (2006). However, our framework is significantly more general in its ability to

accommodate realistic features of the data. In our empirical analysis, we employ a version of

our proposed modeling framework that allows for the presence of a lower bound on yields as

well as flexible volatility dynamics for yields.

2.1 A No-Dominance Model with a Lower Bound

Consider zero-coupon bonds with a face value of one dollar. Assumption 1 is a direct

specification for the price of the n-period bond Pn(Xt), where Xt is the state vector.

Assumption 1. The n-period zero-coupon bond price Pn(Xt) is given recursively by:

Pn(Xt) =Pn−1(g(Xt))× exp(−m(Xt)), (1)

P0(Xt) ≡1, (2)

where X ∈ X ⊆ RN , where m(X) ∈ M ⊆ R is a scalar and g(X) ∈ X.

Because zero-coupon bond prices are available in closed form, all yields and forward rates are

also available. The forward rate fn,t applicable to a one-period loan n periods in the future is

given by:

fn,t = m(g◦n(Xt)), (3)

where g◦k(Xt) is the function g(·) applied k times (see Appendix A.1).
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Appendix A.1 shows that this general framework guarantees the absence of dominant

trading strategies (Rothschild and Stiglitz, 1970; Levy, 1992). That is, prices generated by

Assumption 1 always satisfy the no-dominance (ND) condition, a concept closely related to the

well-known no-arbitrage (NA) condition. Specifically, the NA condition holds if any portfolio

with positive cash flows for a strictly positive probability and zero cash flows otherwise must

command a strictly positive price. The weaker ND condition holds if and only if portfolios

with strictly positive payoffs in all states must have positive prices. Section 2.2 provides more

detail on the ND condition with respect to tractable term structure models.

The functions m(·) and g(·) in Equation (1) are the key primitives in our construction

of bond prices. Applying n = 1 to this equation leads to the one period bond price of

P1(Xt) = exp(−m(Xt)). Thus, the function m(Xt) captures the one period interest rate as

a function of the state vector Xt. The function g(·) embodies how the price of the bond is

discounted back by one period. Equation (2) corresponds to our assumption that bonds are

redeemed at their face value of one dollar.

Our empirical results are based on a particularly relevant example of an ND model that

imposes a lower bound on interest rates in the spirit of Black (1995) and Wu and Xia (2016).

For the short rate function m(·), we let:

rt = m(Xt) = θ w

(
st
θ

)
, (4)

where θ > 0 is a scalar, st = δ0 + δ′1Xt is the shadow rate. The w(x) function, closely related

to the short rate function adopted by Wu and Xia (2016), is defined as:

w(x) = xΦ(x) + φ(x), (5)

where Φ(x) and φ(x) are the cumulative probability function and the density function of a

standard normal distribution, respectively.

To illustrate Equations (4)-(5), Figure 1 displays the short rate rt for values of the shadow

rate st between -2 percent and 5 percent where we fix θ = 0.0070, producing the familiar

hockey stick pattern. It is visually apparent (and it can be shown analytically) that this

choice for w(x) implies the following properties: (i) rt has a lower bound, (ii) rt increases

with the shadow rate st, and (iii) rt converges to the shadow rate for large values of st. We

choose to pin down the lower bound to zero for simplicity, since the short-maturity yields in

our sample do not take negative values.
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As our setting is quite general, other modeling choices are available. For instance, it

is possible to set w(x) = log(1 + exp(x)), which also guarantees positive interest rates. In

addition, the online appendix shows other examples of ND models where yields are given by

linear or linear-quadratic functions of the pricing factors.

-2.0% -1.0% 0 1.0% 2.0% 3.0% 4.0% 5.0%
Shadow short rate s t

0

1.0%

2.0%

3.0%

4.0%

5.0%
Sh

or
t r

at
e

Figure 1: Hockey Stick
The hockey stick transformation from the shadow rate st to the short rate rt given by θw(st/θ),
where w(x) = xΦ(x) + φ(x) and θ = 0.0070. Φ(x) and φ(x) are, respectively, the cumulative
probability function and the density function of a standard normal distribution.

To obtain yields and forward rates, we adopt, for simplicity, a linear choice for g(·):

g(Xt) =KXt, (6)

where K is a N ×N matrix. While the choice of the function w(x) embeds a reduced-form

interpretation that st is the shadow short rate, Equations (4)-(6) together imply that the

one-period forward rate n periods ahead is given by:

fn,t = θ w

(
δ0 + δ′1K

nXt

θ

)
, (7)

which suggests a similar interpretation linking the forward rate fn,t to a shadow forward
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rate sn,t = δ0 + δ′1K
nXt. Like the short rate, the observed forward rate remains positive for

all values of the shadow forward rate. Of course, the observed and shadow forward rates

converge to each other for large values of the shadow rate sn,t.

2.2 Properties

The solution for forward rates in Equation (7) is due to the recursive assumption for

bond prices in Equation (1). By way of comparison, the online appendix shows that under a

specific parameterization, our framework nests the Nelson-Siegel loadings. To this extent, our

approach is reminiscent of the DNS framework of Diebold and Li (2006). This connection is

important given the premium on tractability. While the DNS framework does not guarantee

positive yields, that class of models remains popular to a large extent because it is easy to

use and the models provide good forecasting performance. One reason for the popularity of

DNS models is that they seem almost arbitrage-free, as put forth in Christensen, Diebold,

and Rudebusch (2011).4

Therefore, an important question is whether more general choices of m(·) and g(·) within

our framework produce bond prices that are also almost arbitrage-free and that can be trusted

in practical forecasting applications. We provide an answer to this question in Appendix A.1.

As mentioned above, bond prices in our framework do not offer dominant trading strategy.

We show, in addition, that any remaining arbitrage opportunity our framework could permit

cannot be self-financing and, in addition, that the opportunity does not survive in the presence

of non-zero short-selling costs. This result holds for any choices of m(·) and g(·) and requires

only mild conditions for the dynamics of the risk factors Xt. Indeed, a substantial literature

has documented the costs to establish and maintain short Treasury bond positions, even for

the most liquid issues (Duffie, 1996; Krishnamurthy, 2002; Vayanos and Weill, 2008; Banerjee

and Graveline, 2013).

Therefore, it appears that the practical relevance of the DNS models may generalize to

our broader, more flexible framework. By swapping the NA requirement for the weaker

ND requirement, we hope to broaden the scope of tractable yet economically sensible term

structure models. Choosing a model in the ND framework does not preclude that we recover

a useful representation of the data. In addition, choosing a model in the NA framework does

4See Diebold and Rudebusch (2012) for an excellent survey of DNS models. Bjork and Christensen (1999)
and Filipovic (1999) show theoretically that the DNS model does not preclude all arbitrage opportunities.
Krippner (2013) shows it can be seen as a low-order Taylor approximation of certain no-arbitrage Gaussian
affine term structure models. Coroneo et al. (2011) find that estimated parameters of DNS models are not
statistically different from estimates of corresponding no-arbitrage models.
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not guarantee that we recover a plausible representation of the data by all accounts. For

instance, Duffee (2010) shows that estimates of fully-flexible NA models produce maximum

Sharpe ratios that are astronomically high.

Beyond flexibility and tractability, the ND framework offers another potential benefit. To

see this, compare the ND pricing equation (7) with what one would obtain in a standard NA

setting. First, the ND intercept δ0 is invariant to the volatility specification. The intercepts

in the NA model would contain Jensen terms that vary with maturity and depend on the

variance parameters. This difference resembles the distinction between the constant term in

the Nelson-Siegel model and the additional Jensen term in a standard NA Gaussian model.

Second, the scaling parameter θ in the ND pricing equation (7) is also invariant to the

volatility specification. The scaling parameters in an NA model would vary with maturity and

depend strongly on the volatility of yields. Therefore, it is plausible that the NA restriction

introduces a tension between the fit of yields and estimates of the volatility parameters, as in

Joslin and Le (2021) for square-root processes, that is relaxed in the ND setting.

2.3 State Dynamics

To facilitate comparison with existing models, we consider conditionally Gaussian dynamics

for convenience. However, we re-emphasize that our framework precludes dominant bond

trading strategies under far more general dynamics. For example, future work could easily

consider additional features including a shifting endpoint in the spirit of Kozicki and Tinsley

(2001); Bauer and Rudebusch (2020), a long-memory process as in Goliński and Zaffaroni

(2016), or switching regimes as in Bansal et al. (2004).5

Every model that we consider builds on the following discrete-time vector auto-regressive

VAR(1) dynamics:

Xt+1 = K0 +K1Xt + Σ
1/2
t εt+1, (8)

where εt+1 is i.i.d. standard normal. We also consider a general case where the conditional

5Additionally, the conditional mean Et[Xt+1] at time t may not be completely spanned by Xt. This
allows for notions of unspanned risks introduced by Joslin, Priebsch, and Singleton (2014), Duffee (2011), and
Feunou and Fontaine (2014). Likewise, the conditional variances Vt[Xt+1] can be constant, as in standard
Gaussian DTSMs; can depend on Xt itself, as in the AM (N) models of Dai and Singleton (2000); can depend
on the history {Xt, Xt−1, . . .}, in the spirit of the ARCH literature pioneered by Engle (1982); or can depend
on the history of other risk factors, capturing the notion of unspanned stochastic volatility in Collin-Dufresne
and Goldstein (2002), Li and Zhao (2006), and Joslin (2018).
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dynamics for volatility Σt are given by:

Σt = Σ0 + aΣt−1 + b∆Xt∆X
′
t, (9)

where a and b are both scalar and ∆Xt = Xt − Xt−1, which is similar in spirit to the

multivariate volatility models introduced by Noureldin, Shephard, and Sheppard (2011). We

label this model SV-Bnd, where SV indicates time-varying volatility, B indicates a Black-type

shadow rate, and the subscript nd indicates the no-dominance property. For comparison with

the existing shadow rate models, we also consider a case with a constant covariance matrix

Σt = Σ0, which we label Bnd. Both the SV-Bnd and Bnd specifications can be estimated

quickly and robustly. The case with constant volatility is closely related, and hence can be

compared with the widely used NA implementation of the model in Black (1995) by Wu and

Xia (2016).

2.4 Estimation Strategy

A central practical objective of our paper is to introduce a set of models that are both

accurate but also quick to estimate. An important insight in Joslin, Singleton, and Zhu

(2011) is that implementation of affine models is easier if the candidate model is rotated to an

observationally equivalent representation in which the state variables are the first principal

components of yield or forward rates such that the state variables become observable.

The same insight is applicable to shadow rate models even if they do not belong to the

affine class of models studied by Joslin, Singleton, and Zhu (2011). In the online appendix,

we show that we can essentially undo the non-linearity of our model and transform it

back into a linear space for the purpose of estimation. In the case of shadow rate models,

the transformation recovers a shadow short rate and shadow forward rates that we use as

observable risk factors with linear dynamics. Then, based on this representation, we provide

the closed-form conditional likelihood of the data. Finally, we analytically concentrate out

parameters of the VAR(1) from the likelihood, which preserves another appealing feature of

the approach in Joslin, Singleton, and Zhu (2011). The fact that our construction for Σt uses

∆Xt∆X
′
t to update the volatility is an important building block for this approach. In this

way, the conditional mean (K0, K1) parameters in Equation (8) do not enter the volatility

dynamics in Equation (9) and thus can be optimally obtained as a GLS estimate of the

VAR(1).

Overall, we can achieve fast, convenient and robust estimation of every model. For
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robustness, we also check that our key results are unchanged if we assume that the pricing

portfolios are measured with error and use a Kalman filter to derive the likelihood. Note

that a quick and robust estimation procedure is available more generally as long as the

short rate function m(.) is invertible and the g(.) function remains affine. For even more

general specifications of these functions, one could use the robust estimation method proposed

by Andreasen and Christensen (2015) for non-linear dynamic term structure models with

potentially non-Gaussian latent factors.

3 Model Evaluation in a Simulated Environment

We first estimate and evaluate several bond pricing models using a large number of

simulated yield data sets. Using simulated yields makes comparisons between models more

accurate because all true predictive moments, such as yield forecasts, volatility forecasts, and

conditional Sharpe ratios, are known at each point in time in every simulation. This is unlike

using historical data (which we do in the next section), where predictive moments are not

known and some are difficult to estimate precisely. This is especially true if we want to carry

the assessments to periods over which yields are close to the lower bound.

The data generating process for the simulations is the linear-rational term structure

model of Filipovic, Larsson, and Trolle (2017) that satisfies the lower bound and allows for

time-varying volatility. We select simulations with 30 years of data and that include an

episode at the lower bound toward the end of the sample. The online appendix provides more

details and shows that this sophisticated environment produces realistic simulated paths for

yields and captures the upward sloping yield curve as well as the downward sloping yield

volatility curve. This environment also produces realistic conditional Sharpe ratios that we

can use to assess term structure models. Table 1 reports quantiles of the realized Sharpe

ratios in U.S. data for investment horizons of 3, 6, and 12 months for bonds with 2, 5, and

10 years to maturity. For each bond and each investment horizon, we compute the realized

Sharpe ratios by dividing the average excess return by its standard deviation over rolling

windows of 36 months. Our rolling calculations attempt to capture, in a model-free way, the

time variation in Sharpe ratios. Importantly, the same calculations can be applied to both

historical yields and simulated yields to facilitate comparison.

Overall, while the estimates in Filipovic et al. (2017) were not targeted to match moments

of the historical Sharpe ratios, the simulation closely matches the realized moments. Because

yields have declined and average returns were higher after 2008, the historical median estimates

11



Simulation U.S. Data

m h 2.5 25 Median 75 97.5 2.5 25 Median 75 97.5

3m
2y -0.51 -0.14 0.03 0.20 0.54 -0.64 -0.08 0.35 0.68 1.64
5y -0.50 -0.12 0.07 0.24 0.59 -0.49 -0.06 0.17 0.41 0.80
10y -0.49 -0.10 0.09 0.26 0.62 -0.50 -0.05 0.11 0.30 0.61

6m
2y -0.76 -0.20 0.06 0.31 0.84 -0.97 -0.17 0.39 0.88 2.27
5y -0.76 -0.17 0.12 0.38 0.93 -0.81 -0.09 0.24 0.56 1.16
10y -0.74 -0.15 0.14 0.41 0.96 -0.88 -0.09 0.15 0.43 0.87

12m
2yr -1.13 -0.28 0.12 0.52 1.36 -1.38 -0.22 0.38 1.16 2.49
5y -1.20 -0.24 0.21 0.63 1.51 -1.57 -0.12 0.32 0.75 2.07
10y -1.18 -0.22 0.25 0.67 1.61 -1.66 -0.17 0.24 0.68 2.00

Table 1: Sharpe Ratios Using Historical and Simulated Data
For each bond maturity m and each investment horizon h, we compute the realized Sharpe ratios

by dividing the average excess return by its standard deviation over rolling windows of 36 months.

The same calculations are applied to both historical yields and simulated yields. Columns (3)-(7):

quantiles of the Sharpe ratios across all simulated samples. Columns (8)-(12): quantiles of the

Sharpe ratios for the U.S. data.

are higher than the comparable statistics reported by Duffee (2010). The ex-post realized

Sharpe ratios are higher than the conditional Sharpe ratios that actually prevailed in bond

markets; this is likely because a substantial share of that decline in yields over the last few

decades was unexpected. This may explain why the historical estimates tend to be somewhat

higher than the estimates from simulations.

With simulations in place, we assess the performance of a number of models. Specifically,

we consider an NA affine Gaussian model (Gna), an NA affine stochastic volatility model

(A1na), an NA Black shadow rate model (Bna) as in Wu and Xia (2016), a tractable ND

Black shadow rate model (Bnd), and a tractable ND Black shadow rate model with stochastic

volatility (SV-Bnd). For comparability, all models feature three pricing factors. The Gna and

the A1na models correspond respectively to the well-known A0(3) and A1(3) models of Dai

and Singleton (2000). The difference between each of the considered models and our adopted

data generating process reflects the inescapable reality that the modeler will never know with

certainty the true data dynamics. As an aside, while we focus on a linear-rational model to

assess these models, we note that we find similar results using the Gaussian quadratic term

structure model as the data generating process.
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3.1 Sharpe Ratios

We use estimates of the conditional Sharpe ratios to evaluate and rank models. For a

given investment horizon, the ratio’s numerator is the conditional expected return in excess

of the risk-free rate. The denominator is the conditional volatility of the corresponding

return. Intuitively, the Sharpe ratio measures the expected return per unit of risk—where

risk is measured by total volatility. Our ranking presumes that term structure models that

accurately estimate conditional Sharpe ratios are more useful than other models that do

not. For completeness, the online appendix reports results based on the estimates of the

conditional mean and volatility of yields across models.

To establish this ranking, we consider three investment horizons up to 1-year ahead and

four bond maturities up to 10 years. We measure the accuracy with the root median squared

errors (RMedSE) between true and model-implied Sharpe ratios. We use the median both

along the time dimension and across simulations. Using median statistics mitigates the risk

that one extreme observation might skew the performance of any of the models.

Table 2 reports the RMedSE statistics implied by all models considered. The columns

labeled µ and σ report the mean and standard deviations of Sharpe ratio estimates based on

estimates of bond returns and volatility computed using rolling windows of 36 months. The

column labeled T reports the RMedSE based on the rolling-window Sharpe ratio estimate,

thereby providing a practical and realistic baseline against which to gauge the other models.

The left side of Table 2 reports statistics computed using the full sample in every simulation.

The right side of the table reports statistics using only sub-samples close to the lower bound.

Looking at the results, we ask two questions. First, how do the NA and ND implemen-

tations of the Black shadow rate model compare with each other? The answer is that the

Bnd model delivers more accurate Sharpe ratio estimates than the Bna model, on average, for

every investment horizon and bond maturity that we consider, without exception. In fact, the

Bna model sometimes even underperforms the simpler Gaussian Gna model. This contrast

is rather stark over the lower-bound sample. Whereas the Bnd model handily outperforms

the model Gna, the Bna model performs consistently worse than the Gna model, barring one

exception. We discuss the causes underlying these differences in the next sub-section.

The second question we ask is what is the relative gain from modeling both the lower

bound and time-varying volatility of yields? The answer to this question is that the ND

Black model with stochastic volatility, SV-Bnd, significantly outperforms other models. In

full samples, the SV-Bnd model delivers the most accurate Sharpe ratios, on average, for all

13
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considered horizons and bond maturities. The RMedSE gains are sizeable relative to the

baseline rolling-window estimates and relative to the NA Gaussian model, ranging from 10

to 30 percent. Finally, the SV-Bnd gains are smaller relative to the Bnd model, but larger

relative to the Bna. The A1na model also offers gains in full samples.

When focusing on the lower-bound samples, the baseline rolling-window estimates offer

much poorer accuracy relative to the full-sample results. However, the SV-Bnd model still

delivers the best performance for all horizon-maturity combinations, with the exception of

one case where the Bnd is ranked first (6-month horizon and 6-month terminal maturity). In

all cases, the RMedSE gains are large relative to either of the NA models, ranging between

15 to 50 percent.

The winning model in Table 2 is always statistically significantly better than the Gna

model. To see this clearly, we can look at the distribution of simulation results. Figure 2

reports the cumulative empirical distribution of RMedSEs across simulations. For clarity, we

include results for the SV-Bnd, Gna, and Bna models (the distribution for the A1na model is

close to the Gna, like their respective medians in Table 2). This distribution accounts for the

sampling variability due to the sample size, to the model estimation, and to mis-specification.

The ranking between the three models clearly emerges. The SV-Bnd exhibits first-order

stochastic dominance over the benchmark Gna, which itself exhibits first-order stochastic

dominance over the Bna model. This means that any quantile for RMedSe in the distribution

from the SV-Bnd model is lower than in the distribution from the Gna. A test for equality

also rejects the null hypothesis for arbitrary small critical values. As mentioned earlier, we

find similar results (unreported) when using the Gaussian quadratic term structure model as

the data generating process.

We also evaluate the accuracy of Sharpe ratios for portfolios of bonds, which depends on

the models’ ability to forecast the correlations among future yields. We form three simple

equal-weighted portfolios consisting of zero coupon bonds with maturities of 6 months and 1,

2, ..., 9 years. The first portfolio combines all 10 maturities, the second portfolio combines the

first 5 short-term maturities and the third portfolio combines the last 5 maturities. Table 3,

sharing the same column structure as Table 2, reports the performance by the four models

in forecasting the Sharpe ratios of the three portfolios. The key messages are essentially

unchanged. The SV-Bnd model clearly outperforms all other models for every category. The

performance gains obtained by the SV-Bnd model, relative to the Gaussian model, are similar

to those observed for the case of the individual bonds reported in Table 2. In particular, and

as expected, the gains are especially large across samples near the lower bound.
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Entire Sample ZLB Sample

h m Gna A1na Bna Bnd SV-Bnd Gna A1na Bna Bnd SV-Bnd

3m
6m-9y 0.5 0.97 1.51 0.94 0.72∗ 0.7 0.99 1.04 0.49 0.45∗

6m-4y 0.9 0.92 1.39 0.95 0.68∗ 1.0 0.99 1.10 0.73 0.49∗

5y-9y 1.0 0.91 1.30 0.92 0.68∗ 1.2 1.04 1.04 0.76 0.52∗

6m
6m-9y 0.5 0.96 1.60 0.98 0.77∗ 0.6 0.99 1.20 0.58 0.46∗

6m-4y 0.8 0.95 1.43 0.94 0.69∗ 0.8 1.06 1.22 0.81 0.53∗

5y-9y 0.9 0.95 1.30 0.94 0.68∗ 0.9 1.06 1.15 0.86 0.58∗

12m
6m-9y 0.4 0.96 1.61 1.03 0.77∗ 0.4 0.91 1.39 0.72 0.52∗

6m-4y 0.7 0.94 1.45 1.00 0.66∗ 0.7 0.96 1.24 0.79 0.53∗

5y-9y 0.8 0.94 1.31 1.01 0.66∗ 0.8 0.99 1.27 0.95 0.58∗

Table 3: Bond Portfolio Sharpe Ratios
Gna, A1na, and Bna refer to the NA affine Gaussian model, the NA affine stochastic volatility
model, and the NA shadow rate model, respectively. Bnd and SV-Bnd refer to the ND Black models
with and without BEKK volatility, respectively. For the Gna model, we report the root median
squared errors (RMedSE) between true and model-implied estimates. For other models, we report
the RMedSE statistics relative to the Gna model. The first two columns give the forecast horizon
h and the maturity m at the end of the investment periods, respectively. The symbol ∗ indicates
the best performance for a given forecast horizon, bond maturity, and sample. The lower-bound
sub-samples collect dates for which the one-month rate is 25 basis points or less.
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Figure 2: RMedSE Distributions
Cumulative distribution function of simulated RMedSEs from Sharpe ratio estimates. Gna and Bna
refer to the NA affine Gaussian and Black models, respectively. SV-Bnd refers to the ND Black
models with BEKK volatility. Both panels report results for holding a bond with nine years to
maturity at the end of the investment horizon. Panel (a): results for the 3-month holding horizon.
Panel (b): results for the 12-month holding horizon.

Discussion of the Simulation Results

The combination of time-varying volatility and satisfying the lower bound appears impor-

tant in driving the performance in these simulations. In the online appendix, we show that

the flexible volatility dynamics help improve forecasts of the denominator in the Sharpe ratio

(which is expected) as well as the numerator (which is more surprising). The latter gains are

due to the increased econometric efficiency.

It is easy to understand why the SV-Bnd model does a better job, given its flexible

volatility dynamics. But what can explain the poor performance of the NA Black model Bna

relative to the ND Black model Bnd? Fortunately, the simulation exercise can provide further

insights into the differences.

Conceptually, the only difference between these models can be found in the pricing

equations, which is where the answer must lie. To help facilitate comparison, the pricing
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equation in the Bna model is given by:

fn,t ≈ Snw

(
An +B′nXt

Sn

)
,

where An and Bn are restricted by the absence of arbitrage (the coefficients Sn, An, and Bn

are given in the online appendix). Some of the parameters that constitute Sn play a dual

role in the Bna models. They govern bond pricing and contribute to fitting the volatility of

yields. This dual role may create tension between fitting yields and volatilities. Notably, this

tension is largely absent in ND models (see Equation 7).6

Any trade-off between yield and volatility forecasts will affect the Sharpe ratio estimates.

However, poorer yield and volatility estimates do not always lead to worse Sharpe ratio

estimates. To illustrate this possibility, consider an investment with an expected excess return

and expected volatility of 0.3 and 0.1, respectively, where the true Sharpe ratio is 3. An

error of +0.1 in the forecasts of returns and volatilities implies a conditional Sharpe ratio of

0.4/0.2 = 2. This is a difference of 1 relative to the true ratio. By contrast, an error of -.05

in the forecasts of the expected returns and return volatility implies a conditional Sharpe

ratio of 0.35/0.05 = 5. This is now a difference of 2 relative to the true ratio. The smaller

absolute forecast errors produce a larger Sharpe ratio error.

Following this illustration, and to be more precise, we can express the mean squared error

of Sharpe ratios analytically. Define the forecast error fej(x) and the mean squared forecast

error msfej(x) for some forecast x from model j:

fej(x) ≡ (xj − x0)

msfej(x) ≡ E[fej(x)2|x0] = E[(xj − x0)2|x0],

where we suppress the horizon and maturity index for clarity, xj is the model forecast from

model j, and x0 is the true forecast in the simulation. For instance, msfej(xr
(m)
t,t+h) gives

the mean squared return forecast error for the yield with maturity m at the horizon h, and

msfej(σ
(m)
t,t+h) gives the mean squared volatility forecast error. Analytically, it can be shown

6The scaling parameter θ of the Bnd model does not play a role in shaping the volatility dynamics of
states. However, we require that θ w

(
0−σs

θ

)
≥ 0.0005 and θ w

(
0+σs

θ

)
≤ 0.0050. These inequalities constrain

the variation of the shadow rate only locally, near the lower bound. The NA restrictions tie Sn at every
maturity with the underlying volatility parameters.
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that msfej(SR
(m)
t,t+h) is given by:

msfej(SR) ≈ msfej(xr) + b1msfej(σ)

+ b2E
[
fej(xr)]× E[fe(σ)

]
− b3COV

(
fej(xr); fej(σ)

)
, (10)

where the coefficients are positive b1 > 0, b2 > 0 and b3 > 0 and they depend on the true

Sharpe ratio (see the online appendix). This expression is useful to confirm the intuition

above. The first term indicates that the accuracy of Sharpe ratio estimates moves one-for-one

with the accuracy of returns forecasts. The second term indicates that the impact from the

accuracy of the volatility forecasts depends on the level of the Sharpe ratio. The third term

indicates that msfej(SR) also increases if the product of the biases is positive, which is

caused by the non-linearity in the ratio. Finally, the last term shows that the msfej(SR)

increases with the correlation between the return forecast error and the volatility forecast

error fej(xr) and fej(σ).

In the online appendix, we show that the forecast biases are the key drivers for the

relatively poor performance of the NA models in the simulation exercise. Both the Bna and

Gna models exhibit large biases in their yield and volatility forecasts. In the case of the Bna

model, both biases are negative and reduce the accuracy of the Sharpe ratio estimates. For

the Gna model, the biases have opposite signs, which mitigates the effect on the accuracy of

the Sharpe ratio estimates. We also show that the RMSEs of yield and volatility forecasts do

not explain the relatively poor performance of NA models in estimating conditional Sharpe

ratios. Unsurprisingly, the SV-Bnd model delivers the most accurate forecasts with the

smallest biases across the simulation results.

4 Empirical Illustrations

In this section, we complement our simulation evidence and examine the performance

of the Gna, A1na, Bna, Bnd and SV-Bnd models based on historical data.7 We use rates,

7The linear-rational model of Filipovic, Larsson, and Trolle (2017), used as the data generating process in
Section 3, is capable of capturing many desirable features of the data. However, its estimation is significantly
more involved and requires auxiliary information from derivatives markets, which they use in their paper.
Hence, given our focus on tractability, we do not report empirical results based on the linear-rational model.
To maintain a level playing field, we include only those models for which standard estimation is based on
yield data only and whose global convergence can be obtained in a straightforward and robust manner.
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measured monthly from January 1970 through August 2020, on 1-month forward loans with

13 different maturities: 1-month, 3-month, 6-month, 1-year, 2-year, and annually until year 10.

Specifically, we use the data provided by Gurkanyak, Sack, and Wright (2007) for maturities

longer than 6 months. For maturities less than or equal to 6 months, we bootstrap the

forward rates from Treasury bond prices provided by the Center for Research in Security

Prices (CRSP).

Based on these historical data, we report pricing errors, yield and volatility forecasts and

shadow rate estimates, relative to the Gna model. Following Wu and Xia (2016), and for

comparability with existing results, we use the Kalman filter estimate of the Bna, Bnd and

the Gna models in our analysis. Consistent with the evidence in Joslin, Le, and Singleton

(2013), our results are unchanged if we estimate every model with shadow forward portfolios

priced without error. For the A1na and SV-Bnd models, we use the estimate obtained by

assuming the portfolios of shadow forwards are priced perfectly. This approach is easy to

implement and converges quickly and robustly to global parameter estimates.

4.1 Pricing Errors

Table 4 reports the RMSEs in fitting yields for selected maturities in the full sample and

in the sub-sample where the short rate is at the lower bound. First, the results are very

similar across models. This is not surprising, because every model that we consider has three

factors, which is well known to be enough to fit the cross-section of yields.

Entire Sample ZLB Sample

m Gna A1na Bna Bnd SV-Bnd Gna A1na Bna Bnd SV-Bnd

6m 22.2 21.1 18.2 17.7 21.3 15.1 14.8 13.7 12.1 16.1
1y 18.7 18.5 15.2 15.3 18.4 11.9 11.1 7.2 7.6 10.9
2y 12.4 12.7 10.4 10.6 12.1 9.8 10.3 4.5 5.1 6.7
5y 5.2 3.2 4.0 3.9 3.5 4.5 2.0 3.0 2.7 3.3
10y 1.9 1.3 1.4 1.4 1.4 1.4 0.9 0.9 0.7 1.1

Table 4: Pricing Errors

Pricing errors RMSEs for NA and ND models (in basis points). Gna, A1na, and Bna refer to the NA
affine Gaussian model, the NA affine stochastic volatility model, and the NA shadow rate model,
respectively. Bnd and SV-Bnd refer to the ND Black models with and without BEKK volatility,
respectively. Sample period is 1970:Jan - 2020:Aug.

Second, we contrast the results between the NA and ND shadow rate models with constant
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Figure 3: Shadow Rates
One-month short rate and shadow rate (1970:Jan–2020:Aug). A1na and Bna refer to the NA affine
stochastic volatility and the NA shadow rate models, respectively. Bnd and SV-Bnd refer to the ND
Black models with and without BEKK volatility, respectively.

volatility, Bna and Bnd. We find that the pricing errors are very close, within a fraction of 1

basis point (bp) over the full sample. This result parallels existing work finding negligible

differences between the pricing errors of the Gaussian Gna models and those of the DNS

models. Table 4 extends this result to models with a Black truncated short rate. Note that

both models offer a small improvement over the standard Gaussian Gna model. As expected,

this difference is concentrated in the period close to the lower bound.

4.2 Shadow Short Rates

Figure 3 plots the one-month rate in the A1na and the one-month shadow rates implied

by the Black models Bna, Bnd and SV-Bnd, along with the observed one-month short rate,

focusing on the period after 2008. For much of the first lower-bound period, it is rather

interesting that the shadow rates implied by the two ND models, despite their different

volatility specifications, remain close to one another. Overall, the NA model Bna shadow

rates remain within a range of 50 bps with one clear exception: for much of 2014, the shadow

rate implied by the NA model Bna falls much deeper into the negative region, often by more
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than 100 bps, relative to the two ND shadow rates. In the more recent lower-bound period,

starting in March 2020, these three models produce similar shadow rate estimates. The

estimated shadow rate for the Bna model that we report is broadly similar to results reported

by the Federal Reserve Bank of Atlanta based on the Wu and Xia (2016) model. In particular,

both also report a shadow rate at -3 percent in 2014.

The pattern in Figure 3 suggests that while there has been considerable interest in studying

the economic content of shadow rates, this must be done with caution given that shadow

rates can be highly model-dependent. This is also an important observation documented in

Bauer and Rudebusch (2016).

4.3 Short Rate Forecasts

Figure 4 shows each model’s forecast of the 1-month rate, focusing on the period close

to the lower bound after 2008. We report results for the 3- and 12-month forecast horizons.

Results for other maturities lead to similar observations (not reported).

Two observations are worth nothing. First, the forecasts implied by the NA affine

Gaussian model (green lines) and the NA stochastic volatility model (dotted line) can be

visibly distinct from the forecasts implied by the shadow rate models. In particular, their

forecasts significantly violate the lower bound (at all horizons) in the prolonged period near

the lower bound after 2008. Second, regardless of the model type—NA, ND, constant variance

or stochastic volatility—the forecasts by the shadow rate models are close to one another.

Their proximity suggests that it can be challenging to accurately compare the different models

in one short sub-sample close to the lower bound. This observation strengthens the case

for the exercise in Section 3, where the models are evaluated in a controlled simulation

environment. Additionally, this observation serves as a reminder that even large differences

in the model-implied shadow rates, as documented in the previous sub-section, should be

interpreted with caution. As we can see here, large differences in shadow rates do not translate

to empirically meaningful differences in short rate forecasts.

4.4 Volatility Forecasts

It might be challenging to compare models based on the forecast of yields in one short

sample close to the lower bound, as we have argued above. But this argument does not carry

fully to comparison based on the models’ implied yield volatility. Figure 5 plots the volatility

forecasts of the 24-month yield implied by the models over two forecast horizons: 3- and
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Figure 4: Short Rate Forecasts
Forecasts of the one-month rate (1970:Jan–2020:Aug). Gna, A1na, and Bna refer to the NA affine
Gaussian model, affine stochastic volatility model, and shadow rate model, respectively. Bnd and
SV-Bnd refer to the ND Black models with and without BEKK volatility, respectively.

12-month. As a benchmark, we compute the realized variances of the 24-month yield using

three months of daily data leading up to each point in time t. It is known that realized

volatility can be estimated precisely using relatively high frequency data, even in a short

window.

Every shadow rate model appears to do a good job during the lower-bound episodes

starting in 2008 and 2020. Away from the lower bound, the SV-Bnd model performs well

matching the large fluctuations of the RV series (ranging from as low as 40 bps to as high

as 300 bps). This justifies the simple construction for the volatility dynamics in Equation

(9). The volatility forecasts from the A1na model follow the broad pattern displayed by the
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Figure 5: Volatility Forecasts
Forecasts of the 2-year bond yield volatility (1970:Jan–2020:Aug). Gna, A1na, and Bna refer to the
NA affine Gaussian model, affine stochastic volatility model, and shadow model, respectively. Bnd
and SV-Bnd refer to the ND Black models with and without BEKK volatility, respectively.

realized volatility. Specifically, the A1na model tracks rather closely the realized volatility

pattern in the recent episode near the lower bound and continues to do so when yields

are lifted off the lower bound. However, the A1na volatility forecasts significantly miss the

short period of very high volatility in the early 1980s. These results are consistent with the

conclusion by Jacobs and Karoui (2009) that the ability of this class of models to capture

conditional volatility depends on the sample period.

In contrast, and as expected, it is clear that the yield volatilities implied by the constant-

variance Black models are essentially a flat line for periods away from the lower bound.

Loosely speaking, the flat lines correspond to the average volatility levels away from the lower
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bound implied by the Bna and Bnd models. It is notable that they are not at the same level.

Specifically, the average volatility level implied by the NA model Bna is higher than the level

implied by the ND model Bnd and higher than the corresponding RV series for much of the

sample, with the exception of the early 1980s. The fact that the Bna model seems to miss the

average volatility level indicated by the RV series constitutes evidence that the Bna model

might be constrained. As we argue before, the scaling parameter Sn in the pricing equation

of the Bna model is directly linked to the volatility parameters of the model. As such, this

dual role of the scaling parameter might create a tension in the ability of the model to fit the

multiple dimensions of the data.

These results are confirmed by the RMedSEs reported in Table 5. Across maturities and

horizons, the SV-Bnd model is able to reduce volatility forecast errors by 10 to 30 percent

relative to the A1na model during the full sample. The improvement can be even larger in

specific cases or in sub-samples. The reduction is particularly large for short-term yields near

the lower bound, where the improvement ranges from 70 to 85 percent. This is precisely where

we expect the SV-Bnd model to provide the largest improvement. Across other maturities

and in the period near the lower bound, the improvement ranges from 10 to 50 percent.

Comparing the Bna and Bnd models during the period near the lower bound, where these

models exhibit meaningful volatility dynamics, does not produce a clear winner.
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Entire Sample ZLB Sample

h m A1na Bna Bnd SV-Bnd A1na Bna Bnd SV-Bnd

3m

1m 35.85 1.15 0.87 0.76 34.49 0.61 0.50 0.16
2y 16.52 1.48 1.04 0.69 15.28 0.73 1.13 0.50
5y 12.00 1.43 1.18 0.83 8.77 1.23 1.40 0.79
10y 12.34 1.25 1.09 0.71 13.65 0.96 0.80 0.47
Avg 19.17 1.33 1.05 0.75 18.05 0.88 0.96 0.48

6m

1m 49.73 1.10 0.85 0.77 46.07 0.68 0.61 0.20
2y 22.61 1.50 1.08 0.73 20.89 0.79 1.21 0.66
5y 16.87 1.39 1.17 0.86 13.24 1.13 1.24 0.84
10y 17.64 1.22 1.07 0.74 19.60 0.92 0.82 0.51
Avg 26.71 1.30 1.04 0.77 24.95 0.88 0.97 0.55

12m

1m 67.85 1.05 0.86 0.71 60.66 0.88 0.73 0.31
2y 30.34 1.52 1.15 0.89 28.00 0.99 1.35 0.92
5y 23.05 1.39 1.17 0.92 19.78 1.04 1.18 0.88
10y 25.35 1.17 1.05 0.76 28.33 0.90 0.76 0.57
Avg 36.65 1.28 1.06 0.82 34.19 0.95 1.00 0.67

Table 5: Volatility Forecasts
Root median squared difference between volatility forecasts and our realized volatility forecasts for
a bond with maturity m and an horizon h. A1na and Bna refer to the NA affine stochastic volatility
model and the NA shadow rate model, respectively. Bnd and SV-Bnd refer to the ND models with
and without BEKK volatility, respectively. For the Bna model, we report the root median squared
errors (RMedSE), in basis points, between RV and model-implied volatility forecasts. For the Bnd
and SV-Bnd models, we report the ratio of RMedSe relative to the A1na model. Forecasts horizons
are 3, 6, and 12 months.
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5 Model Evaluation with Out-of-Sample Forecasts

This section continues the evaluation of the Gna, A1na, Bna, Bnd, and SV-Bnd models in

a real-time, out-of-sample forecast exercise based on the same historical data employed in the

previous section. To start, each model is first estimated based on monthly historical data from

January 1970 through December 1995. As above, we use rates on 1-month forward loans with

13 different maturities: 1-month, 3-month, 6-month, 1-year, 2-year, and annually until year

10. We then evaluate 3-month-ahead yield and volatility forecasts for the 6-month, 2-year,

5-year, and 10-year bonds, and we record the associated forecast errors. The results are

qualitatively similar if we look at 6-month or 12-month forecasts. We then re-estimate each

model expanding the sample to January 1996 data, and repeat the evaluation. We iterate

this procedure, expanding the sample one month at a time, until August 2020. Figure 6

reports out-of-sample root median squared forecast errors for yields and volatilities across all

time periods.

5.1 Yield and Volatility Forecasts

We start with an evaluation of yield forecast errors. Panels (a)-(b) of Figure 6 report

the results in sub-samples before 2008 and after 2008 (away or near the zero lower bound),

respectively. Despite the heterogeneity that we observe in the simulation environment, we do

not observe significant differences across the models in terms of their ability to characterize

yield expectations out-of-sample. Regardless of whether we are away from or near the lower

bound, out-of-sample yield forecasts with an expanding estimation window do not seem to

be a metric for which model delineation is particularly useful.

We next turn to an evaluation of volatility forecasts, where the realized volatility is the

square root of the sum of daily squared returns. Panels (c)-(d) of Figure 6 also report the

results in sub-samples before 2008 and after 2008, respectively. Regardless of the proximity

to the zero lower bound, the volatility forecasting performance of the Gaussian model, Gna,

is, not surprisingly, relatively poor. The two best models in terms of volatility forecasting are,

also not surprisingly, the A1na and SV-Bnd models. The SV-Bnd model produces volatility

forecast errors that are consistently small, on average, across maturities, and its performance

relative to other models is particularly notable for shorter maturity bonds. In contrast, the

performance of the A1na model is strong overall, but deteriorates for shorter maturity bonds.

When we compare the performance of the Bna and Bnd models, we find that the ND

model performs better before 2008, particularly for shorter maturity bonds. This difference
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can only be attributed to the bias introduced by the no-arbitrage restriction. However, the

performance of both improves after 2008 and the wedge between the two models essentially

closes (Panel (d) of Figure 6). For long maturities, their performance is close to the results

based on the SV-Bnd model. This latter result suggests that the volatility compression that

arises near the lower bound is capturing most of the variation in volatility during these

periods (see also Christensen and Rudebusch 2014; Kim and Priebsch 2013).

Overall, a real-time out-of-sample exercise based on yield forecasting proves less useful for

delineating models. This is perhaps not so surprising given the extremely persistent, near unit-

root nature of bond yields. This was also part of the motivation for the simulation exercise

in Section 3. However, the exercise is able to delineate models based on volatility dimensions,

highlighting the importance of the models that directly facilitate stochastic volatility. Taken

together, our preferred SV-Bnd model fares favorably in an out-of-sample evaluation. From

this perspective, the closest competitor (particularly for some longer maturities) is the A1na

stochastic volatility model. Hence, the results in the historical sample offer a more positive

message about this model than the results in simulated samples.

5.2 Linear Projection of Yield Changes

Beyond RMSE statistics, Dai and Singleton (2002) propose a modified version of the

popular Campbell and Shiller (1991) expectations hypothesis regression as an alternative

metric to assess the predictive power of a term structure model. The original Campbell and

Shiller (1991) regression is often referred to as LPY(i) and the modified version LPY(ii). In

using essentially de-trended variables such as yield changes and the slope of the yield curve,

this approach affords an evaluation of each model’s ability to predict yields while largely

abstracting from the near unit root behavior of bond data.

As is well-known, LPY(i) involves regressing a series of yield changes on the corresponding

slopes of the yield curve. The regression is designed such that if the expectation hypothesis

holds, the coefficient of the regression should be one, regardless of yield maturity. What

Campbell and Shiller (1991) find, however, is that these coefficients are significantly different

from one. As a matter of fact, they are mostly negative and increasingly so as bond maturity

increases. This pronounced failure of the expectations hypothesis translates to evidence

for strong time variation of bond risk premia. LPY(ii) adds a model-implied risk premium

component to the yield changes used in LPY(i). The premise is that if the risk premium

adjustment is in agreement with the data, the regression coefficients will be corrected and

moved closer to one.
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We revisit the exercise to evaluate the Gna, A1na, Bna, Bnd, and SV-Bnd models. As in

Dai and Singleton (2002), we ask whether the LPY(ii)-adjustment induced by each model

can move the Campbell and Shiller (1991) regression coefficients closer to unity. It should be

noted that in the out-of-sample spirit, we conduct this analysis on a real-time basis, whereas

Dai and Singleton (2002) employ model estimates based on the entire sample.

Specifically, LPY(ii) is derived from the decomposition of the bond return into a risk

premium component and an expectations component. Based on this decomposition, one can

use the model-implied premium component as a correction term for LPY(i):

yn−1,t+1 − yn,t +
ent

n− 1
= αn + φn(

yn,t − y1,t

n− 1
) + εn,t+1, (11)

where ent is the relevant risk adjustment:

ent = −(n− 1)Êt[yn−1,t+1 − yn,t] + ŷn,t − ŷ1,t. (12)

The correction term ent can be computed for every model. Equation (12) tells us that the

ability of a candidate model to capture the risk adjustment in the context of LPY(ii) depends

upon its ability to fit bond yields contemporaneously and to capture the time-series yield

dynamics. If that is the case, then the theoretical value of the φn coefficient is unity. Note that

models with similar forecast RMSEs may offer different performance based on the LPY(ii)

criteria—the estimates for φn can differ—especially if the yield forecast errors are correlated

with the spread yn,t − y1,t.

To operationalize LPY(ii), we require yield forecasts as well as fitted yields from every

model. The typical way to compute ent is to estimate each model using the entire sample of

data. However, given our focus on out-of-sample performance, we estimate each model every

month in the expanding window framework discussed above. We then compute ent every

month, collect the results from January 1995 until the end of the sample and run the LPY(ii)

in Equation (11). This means that the adjustment term is a real-time estimate without

look-ahead bias.

Figure 7 plots the LPY(ii) coefficients φn across maturities n for every model. We consider

an out-of-sample forecast horizon of 12 months. There are two key takeaways. First, similar

to Dai and Singleton (2002), we find that the coefficients implied by the A1na model remain

far from unity (confidence bounds are provided in the blue shaded area). The premium

adjustments have a relatively small effect and these coefficients are much closer to the standard

30



Figure 7: LPY(ii) Regression Coefficients
Estimates of coefficients φn in the LPY(ii) regression for annual yield changes based on Equations (11)-

(12), where the adjustment ent is computed based on real-time model estimation with an expanding

sample. Gna, A1na, and Bna refer to the NA affine Gaussian model, affine stochastic volatility

model, and shadow rate model, respectively. Bnd and SV-Bnd refer to the ND Black models with

and without BEKK volatility, respectively. Confidence bounds for the LPY(ii) regression coefficients

from the NA affine stochastic volatility model are provided in the blue shaded area.

Campbell-Shiller regression coefficients (i.e., ignoring the adjustment term). Despite the fact

that the A1na performance in out-of-sample volatility forecasts is competitive, we infer that

the well-known tension between yields, returns, and volatility dynamics in this no-arbitrage

model has important negative consequences for the implications of out-of-sample forecasts

in correctly capturing premium dynamics. Second, while there is relatively little separating

the other models along this particular evaluation dimension, the coefficients implied by the

SV-Bnd model are closer to unity across maturities than the A1na model. Taken together,

from the perspective of yield and volatility forecasts along with LPY(ii) premium dynamics,

the SV-Bnd model fares favorably out-of-sample in a manner consistent with its strong

performance in the simulation environment.
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6 Conclusion

We introduce a family of tractable no-dominance term structure models where bond prices

are analytically available and very nearly arbitrage-free for essentially any specification of

the time-series dynamics. Our results based on some special cases show how this new class of

models can do a reasonable job, relative to existing models, in capturing the dynamics of

conditional bond Sharpe ratios before and after 2008, when yields reach the lower bound.

Variation in the volatility term structure remains a challenge for existing models. Our

family of no-dominance models is large and permits flexible specifications of the dynamic

interactions between yield and macro variables, including time-varying volatility and the

interaction with the lower bound. This should allow future research to revisit several results

involving the trade-off between the risk premium and yield volatility faced by investors,

the influence of conventional and unconventional policy actions on this trade-off (including

quantitative easing and forward guidance), and the correlations among international term

structures (when far from or near to their respective lower bounds).
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A Appendix

A.1 No-Dominance Term Structure Models

In the following, we study dominant and arbitrage trading strategies between bonds. For this purpose, note
that, starting with P0(·) ≡ 1 and expanding the recursion (1), we get

Pn(Xt) = exp(−
n−1∑
i=0

m(g◦i(Xt))). (A.1)

Equation (3) follows from the definition of the n-period yield and forward rate, yn,t ≡ − log(Pn(Xt))/n
and fn,t ≡ (n+ 1)yn+1,t − nyn,t, respectively. In the following results, we rely on Assumption 2, which is
essential to clarify the set of admissible time series dynamics.

Assumption 2. The time series dynamics of Xt admit X as support.

Assumption 2 is analogous to the requirement in NA models that the historical and risk-neutral measures
be equivalent measures. This is a mild requirement, since this affords researchers the flexibility to consider
rich dynamic and distributional assumptions. First, Theorem 1 checks dominant bond trading strategies;
portfolios of bonds with strictly positive payoffs.

Theorem 1 (No Dominant Strategies). Assumptions 1-2 guarantee the absence of strictly dominant trading
strategies in the bond markets.

Proof. Let wn denote the amount (in face value) invested in each n-period bond. Suppose that this portfolio
guarantees positive payoffs:

∑
nwnPn−1(Xt+1) > 0 ∀Xt+1 ∈ X. From the pricing recursions in Equation (1),

the price of this portfolio is given by∑
n

wnPn(Xt) = exp(−m(Xt))×
∑
n

wnPn−1(g(Xt)). (A.2)

Since g(Xt) ∈ X, and since
∑

nwnPn−1(Xt+1) > 0 for all Xt+1 ∈ X, it follows that the price of this portfolio
is strictly positive. Thus, a dominant trading strategy does not exist.

Next, we consider portfolios that have a zero payoff with strictly positive probability, but positive payoffs
otherwise. The NA condition requires that the price of this portfolio be strictly positive. Theorem 2
establishes that portfolios like this one cannot admit strictly negative prices in our framework.

Theorem 2 (Non-Negative Payoffs). Assumptions 1-2 ensure that bond portfolios with strictly non-negative
payoffs cannot admit strictly negative prices.

Proof. Let wn denote the amount (in face value) invested in each n-period bond. Consider a portfolio
with strictly non-negative payoffs:

∑
nwnPn−1(Xt+1) ≥ 0 ∀Xt+1 ∈ X. From the pricing recursion in

Equation (1), the price of this portfolio is given by∑
n

wnPn(Xt) = exp(−m(Xt))×
∑
n

wnPn−1(g(Xt)). (A.3)

The price of this portfolio cannot be negative, for it requires
∑

nwnPn−1(g(Xt)) < 0, but this would
contradict g(Xt) ∈ X and

∑
nwnPn−1(Xt+1) ≥ 0 for all Xt+1 ∈ X.

37



Figure A.1 illustrates Theorem 2 and clarifies that what is setting NA and ND apart is the set of zero-
cost portfolios with zero or positive payoffs (both with positive probability). For portfolios with strictly
non-negative payoffs, the absence of arbitrage restricts prices to be on the positive half of the real line,
excluding the origin. Assumption 1 allows for bond prices on the positive half of the real line, including the
origin. The difference reduces to one point on the real line, the origin, graphically illustrated by Figure A.1.

0

0

Implied by our models

(

[

Required by NA

Figure A.1: Prices of portfolios with strictly non-negative payoffs

Figure A.1 suggests that the distance between our models and the no-arbitrage paradigm is small. Does
this difference matter? Note that Figure A.1 also tells us that any remaining arbitrage opportunities must
involve a self-financing portfolio with strictly non-negative payoffs in the future and with strictly zero set-up
costs today. But a self-financing portfolio must involve short-selling bonds and, since short positions imply
non-zero costs to set up and to maintain, the specific portfolio in Figure A.1 may not represent an arbitrage
opportunity in a practical sense for sophisticated long-short investors. The presence of small transaction
costs preventing self-financing strategies is economically plausible.

Theorem 3 (Transaction Costs). Assumptions 1-2 rule out all arbitrage opportunities in bond prices if
transaction costs for short positions are positive.

Proof. Consider again a portfolio in which the amount (in face value) invested in each n-period bond is
given by wn. To account for transaction costs, let’s assume that the set-up cost at time t of the portfolio
is C0 and, to realize the cash flows at time t + 1, the transaction cost is given by C1. The existence of
transaction costs means that at least one of C0 and C1 is strictly positive. The one-period-ahead cash flows
net of transaction costs are given by

CF (Xt+1) =
∑
n

wnPn−1(Xt+1)− C1.

Recall that the absence of arbitrage is equivalent to requiring that any portfolio with non-negative payoffs
must command a positive price. Thus, the key question here is the following: if CF (Xt+1) ≥ 0 for every
Xt+1 ∈ X, then can we show that the price of the portfolio must be strictly positive, net of transaction
costs? The price of this portfolios is given by

Price(Xt) =
∑
n

wnPn(Xt) + C0

= exp(−m(Xt))
∑
n

wnPn−1(g(Xt)) + C0,

= exp(−m(Xt))× (CF (g(Xt)) + C1) + C0,

= exp(−m(Xt))× CF (g(Xt)) + exp(−m(X))C1 + C0, (A.4)

where the second line follows from Equation (1) and the third line follows from the definition of the cash flows
CF (Xt+1). The first term on the right-hand side of (A.4) is non-negative, since g(Xt) ∈ X⇒ CF (Xt) ≥ 0.
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Additionally, the last two terms must add up to a strictly positive number, since C0 and C1 cannot be
jointly zero. Thus, Price(Xt) > 0 as needed.
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Online Appendix

I Special Cases

Nelson-Siegel Let ∆ denote the discrete time interval and consider a three-factor model N = 3 with
the following one-period interest rate:

m(Xt) = ∆(1, 1, 0)′Xt

and the g(·) function

g(Xt) =

 1 0 0
0 a 1− a
0 0 a

Xt.

Using the pricing equations, the per annum yield for a bond with maturity m = n∆ is given by:

yn,t/∆ = X1,t + (X2,t +X3,t)
1− an

1− a
/n− an−1X3,t. (B.5)

Then, using notations of Nelson and Siegel (1987): a = 1−∆/τ where 1/τ can be interpreted as modulating
the frequency of the factors, we can use the L’Hôpital’s rule to show that as ∆→ 0,

an−1 → e−m/τ and
1− an

1− a
/n→ (1− e−m/τ )/(m/τ),

and, therefore, that the yield in (B.5) approaches:

X1,t + (X2,t +X3,t)(1− e−m/τ )/(m/τ)− e−m/τX3,t.

This last expression is identical to the model of Nelson and Siegel (1987) with X1,t, X2,t, and X3,t

corresponding respectively to their original parameters of β0, β1, and β2.

Linear models Suppose Xt ∈ RN . The following natural specification leads to affine Gaussian term
structure models:

m(Xt) =δ0 + δ′1Xt (B.6)

g(Xt) =KXt, (B.7)

where δ0 is a scalar, δ1 is an N × 1 vector and K is an N ×N matrix. From Equation (A.1), yields are
linear:

yn,t =δ0 + (Bn/n)Xt, (B.8)

with Bn given by the recursion Bn = Bn−1K + δ′1. For comparison, the A0(N) Gaussian dynamic term
structure model (e.g., Dai and Singleton, 2000 and Duffee, 2002) has a linear short rate equation and
risk-neutral dynamics given by

rt =δ0 + δ′1Xt

Xt+1 =K0 +KQ
1 Xt + εt+1, (B.9)
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where εt+1 ∼ N(0,Σ). The solution for yields in that standard case is given by

yn,t = An/n+ (Bn/n)Xt, (B.10)

with coefficients given by

Bn =Bn−1K
Q
1 + δ′1, (B.11)

An =An−1 + δ0 −
1

2
Bn−1ΣB′n−1. (B.12)

Clearly, the short rate rt and the loadings Bn are identical between these models. The intercept terms An
for n > 1 are different only because of the convexity correction Bn−1ΣB′n−1. This Jensen term is negligible
in a typical application (see Figure B.2).

0 20 40 60 80 100 120
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

months

%

Figure B.2: The Jensen term (1
2Bn−1ΣB′n−1) is negligible in Gaussian models. Results are based on

parameter estimates from the canonical representation in Joslin, Singleton, and Zhu (2011).

Quadratic models The following choice generates linear-quadratic TTSMs:

m(Xt) =δ0 + δ′1Xt +X ′tδ2Xt

g(Xt) =KXt, (B.13)

where δ0 is a scalar, δ1 is a N × 1 vector and δ2 is a N ×N matrix. Using our pricing equation, yields are
given by

yn,t =δ0 + (Bn/n)Xt +X ′t(Cn/n)Xt, (B.14)
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where the linear and quadratic coefficients Bn and Cn are given by

Cn =K ′Cn−1K + δ2

Bn =Bn−1K + δ′1. (B.15)

Compare this with the affine-quadratic model developed by Ahn, Dittmar, and Gallant (2002) and Leippold
and Wu (2003) (see Realdon (2006) for discrete-time treatment) where the short rate equation is quadratic:

rt = δ0 + δ′1Xt +X ′tδ2Xt,

and with the risk-neutral dynamics as in (B.9). The solution for yields in this case is given by

yn,t =An/n+ (Bn/n)Xt +X ′t(Cn/n)Xt, (B.16)

where the loadings An, Bn and Cn are given by the following recursions:

Cn =KQ
1

′
Cn−1Ωn−1K

Q
1 + δ2,

Bn =Bn−1Ωn−1K
Q
1 + δ′1,

An =An−1 + δ0 −
1

2
log|Ωn−1| −

1

2
Bn−1Ωn−1ΣBn−1, (B.17)

with Ωn−1 ≡ (IN − 2ΣCn−1)−1. Comparing loadings in (B.15) and (B.17) reveals two differences. First, the
term Bn−1Ωn−1ΣBn−1 reflects a convexity adjustment. Second, the matrix Ωn−1 may introduce a wedge
between loadings if the quadratic coefficient δ2 is “large.”

II Estimation and Implementation Strategy

Portfolios of Shadow Forwards as Risk Factors The ND pricing equation (7):

fn,t = θ w

(
δ0 + δ′1K

nXt

θ

)
is strictly increasing and has a well-defined inverse f−1(·). Applying the inverse f−1(·) to both sides, we
can write:

sn,t ≡ θ w−1

(
fn,t
θ

)
= δ0 + δ′1K

nXt. (B.18)

We refer to the left-hand side sn,t of Equation (B.18) as the shadow forward implied in the Black style
model. Shadow forwards are linear in the states, and thus can turn negative, just as the shadow short rate.
In the case n = 0, the shadow forward is the same as the shadow rate s0,t = st.

Given a value of the scaling parameter θ, the portfolios of shadow forwards are directly observable within
our model from Equation (B.18). Now consider J shadow forwards sn,t with maturities n = n1, n2, . . . , nJ
stacked into a J × 1 vector s̄t:

s̄t = AX +BXXt (B.19)

where AX and BX stack the intercepts and loadings of Equation (B.18), respectively. Equation (B.19)
is linear. Therefore, we can apply the insight of JSZ and rotate the latent state vector Xt into linear
combinations of shadow forwards. Specifically, we construct N portfolios of shadow forwards Pt = Ws̄t for

42



a given N × J matrix W . We can recover the latent state Xt as a linear function of the portfolio Pt,

Xt = (WBX)−1(Pt −WAX),

which can be substituted into Equation (B.19) to obtain a pricing equation for the shadow forwards in
terms of Pt:

s̄t = AP +BPPt, (B.20)

where BP = BX(WBX)−1 and AP = AX − BP(WAX). Equipped with the shadow forwards, we can
evaluate the actual forwards simply by fn,t = θ w

( sn,t

θ

)
, which only involves the parameters θ, δ0, δ1 and

K governing bond pricing. We also impose additional requirements to ensure that near-zero values of the
shadow rate st, between 5 and 50 bps, correspond to values of the short rate near the lower bound. In
particular, we require: (i) θ w

(
0−σs
θ

)
≥ 0.0005; and (ii) θ w

(
0+σs
θ

)
≤ 0.0050 where σs is the volatility of the

shadow short rate st.

Identification The ND that we propose in Section 2.1 has the parameters θ, δ0, δ1 and K governing
bond pricing in addition to the parameters K0, K1, Σ0, a, and b that are responsible for the time series
dynamics. Not all of the parameters are econometrically identified, because the state variables are latent.
We adopt the JSZ canonical form whereby all identification assumptions are implemented on the pricing
side. Specifically, we assume that δ1 = ι is a vector of ones and K has an ordered Jordan form. The JSZ
canonical form leaves the time series dynamics completely unconstrained. Therefore, this identification
strategy is applicable to the rich set of time series dynamics satisfying Assumption 2. This identification
approach will also play an important role in constructing the likelihood and analytically concentrating
some parameters in the estimation. Based on the insights of JSZ, we anticipate that estimation of the
P-representation will be robust.

Conditional Likelihood It is easy to see that Pt will inherit the VAR(1) structure as well as the
scalar BEKK volatility specification from the X-dynamics, since the correspondence between Xt and Pt is
linear. We have:

Pt+1 = K0P +K1PPt +
√

Σt,Pεt+1, (B.21)

Σt,P = Σ0,P + aΣt,P + b∆Pt∆P ′t. (B.22)

Therefore, the primitive parameters of our model governing the dynamics of P are K0,P , K1,P , Σ0,P , a,
and b. Importantly, due to the JSZ normalization, these parameters are unconstrained. The parameters θ,
δ0 and K governing the pricing equation remain unchanged.

We estimate our models by maximizing the log likelihood of the observed forwards.8 That is, we need to
compute for each t:

P(fot |It−1),

where fot denotes the J×1 vector (fon1,t, f
o
n2,t, . . . , f

o
nJ ,t

)′ of observed forwards and It denotes the information
set generated by fot up to time t. The superscript o differentiates observed quantities from their theoretical
constructs. The overall likelihood is simply obtained by

∏
t P(fot |It−1). We construct this likelihood as

follows. We make the assumption that the N portfolios of shadow forwards Pot are priced without error
and identical to their model counterparts at each point in time: Pot = Ws̄ot ≡Ws̄t = Pt. Next, we assume

8Recent advances provide alternative estimation methods. See, for example, Joslin, Singleton, and Zhu (2011),
Joslin, Le, and Singleton (2013), Hamilton and Wu (2011), Adrian, Crump, and Moench (2013), and Diez de los Rios
(2015).
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that J −N combinations of forwards Weft are priced with i.i.d. errors:

We(f
o
t − ft) ∼ N(0, σ2

eIJ−N ), (B.23)

given some (J −N)× J loading matrix We. These two assumptions are similar to case C in JSZ where
the likelihood of coupon bonds is used to estimate the model using N combinations of zero-coupon yields
measured without errors, which are a non-linear transformation of the coupon bond yields. The analogy is
that here the shadow forwards are a non-linear transformation of the forwards.

Combining these two measurement assumptions, we can write the one-step-ahead conditional likelihood of
forwards fot :

P(fot |It−1) =P (Wef
o
t |Pt, It−1)× P (Pt|It−1)×

∣∣∣∣∂h(fot )

∂fot

∣∣∣∣ , (B.24)

which have three components on the right-hand side. Except for the SV-Bnd model, it is straightforward to
derive the model-implied likelihood of the data for the more general case in which all forwards are observed
with errors, using the Kalman filter.

The first component P (Wef
o
t |Pt, It−1) captures the cross-sectional fit of the model: its ability to explain

the observed forwards Wef
o
t based on N portfolios of shadow forwards Pt observed contemporaneously. This

component can be computed easily using the distribution of pricing errors assumed in Equation (B.23). The
second component P (Pt|It−1) captures the time series fit of the model: the predictive density of observing
Pt given the information set one period earlier. This component can also be derived in a straightforward
manner, since Pt is measured without errors and governed by the conditional Gaussian VAR(1) dynamics in
Equations (B.21-B.22). The final term is a Jacobian adjustment to account for the non-linear dependence
between forward rates and their shadow counterparts:

h(fot ) =

(
Wef

o
t

Wθw−1(fot /θ)

)
.

To avoid a singular likelihood, the choice of the matrices W and We must be such that the Jacobian
adjustment term is non-zero. For simplicity, we choose W as the loadings on the first N PCs of fot and We

the remaining J −N PCs of fot .

Analytical Concentration of Parameters The maximum likelihood estimates of K0P and K1P
can be derived analytically. This is possible because these conditional mean parameters do not mix with
volatility parameters in the expression for the log likelihood. Specifically, K0P and K1P enter the log
likelihood via a quadratic form because time series innovations are conditionally Gaussian. Therefore, the
first-order derivative of the log likelihood must be linear and the maximum likelihood estimates K0P and
K1P are given:

vec([K̂0P , K̂1P ]) = ET [Pat Pat
′ ⊗ Σ−1

t ]−1vec(ET [Σ−1
t Pt+1Pat

′]), (B.25)

where ET [.] denotes sample average, ⊗ is the Kronecker product, Pat = (1, P ′t)′ and where the vec(·)
converts a matrix into a column vector by stacking its columns (from left to right). This result arises
because we use the first difference ∆Pt to update volatility in Equation (B.22), instead of the innovations
Pt+1 − (K0P + K1PPt), which would be the case in the standard BEKK volatility. This alternative
construction ensures that the parameters K0P and K1P do not enter the dynamics of Σt. Otherwise, the
first-order conditions of the log likelihood with respect to K0P and K1P would be highly non-linear and
closed-form estimates of K0P and K1P would likely be much harder to obtain.
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III Simulation Exercise

Data generating process We use the linear rational term structure models of Filipovic et al. (2017)
to simulate samples of yields data. In particular, we use their LRSQ(3,3) specification with three factors Zt
explaining the cross-section of bond yields and three factors Ut driving unspanned yields volatility. The
state 6× 1 state vector Xt follows an extended square root process:

dXt = (b− βXt)dt+ diag(σ)
√
XtdBt,

the volatility factors Ut correspond to the last three elements of Xt:

Ut =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Xt,

and three cross-sectional factors Zt correspond to the sum of the first three elements of Xt and the last
three elements of Xt:

Zt =

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

Xt.

Pricing functions The pricing functions involve five parameters: α, φ, ψ, θ, κ. The price of a zero-coupon
bond with τ years to maturity is given by:

pt = e−ατ
φ+ ψ′(θ + e−τκ(Zt − θ))

φ+ ψ′Zt
,

which is the ratio of two linear functions of Z, hence the name linear rational. The corresponding yield to
maturity is given by:

yt = − log(pt)

τ
,

and, taking the limit τ = 0, the instantaneous short rate is given by:

rt = α+
ψ′κ(Zt − θ)
φ+ ψ′Zt

.

Generating ZLB samples We discretize the dynamics of Xt:

Xt+∆ = max(Xt + (b− βXt)∆ + diag(σ
√

∆)
√
Xtεt+∆, 10−8),

where the frequency is daily ∆ = 1/365 and where εt+∆ is an i.i.d. standard normal variable. Using
these dynamics, we first run a burn-in sample of 10 years and then generate a daily sample of 1000 years.
Out of this sample, we randomly choose a ZLB episode, defined as any single day for which the short
rate is less than or equal to one basis point. Starting from this day, we go back by 30 years and collect
end-of-month yields. This design implies that ZLB episodes are typically found toward the end of the
simulated samples. We repeat this process until we obtain 100 different simulated samples, each of which
featuring the ZLB behavior of interest rates. If needed, we generate another daily sample of 1000 years
with different simulation seeds until we reach 100 different simulated samples.
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Parameter values We use parameter estimates and normalized values provided in Filipovic et al.
(2017)α = 0.0566, φ = 1, ψ′ = (1, 1, 1)′, θ′ = (0.2985, 0.5738, 0.1601)′ and

κ =

 0.1895 0 0
−0.2460 0.1280 0

0 −0.1846 0.6616

 , σ =



0.3177
0.2676
0.0509
0.7920
0.9135
0.3585

 , b× 1000 =



44.5325
0.0076
−0.0222
12.0333
0.0078
0.0209

 ,

β =



0.1895 0 0 0 0 0
−0.2460 0.1280 0 0 0 0

0 −0.1846 0.6616 0 0 0
0 0 0 0.1895 0 0
0 0 0 −0.2460 0.1280 0
0 0 0 0 −0.1846 0.6616

 .

Example Panel (a) of Figure B.3 shows the yields with maturity of 1 month, 5 years, and 10 years in
one simulated sample with 60 years of data. This provides a “big picture” view. The simulated yields also
exhibit significant variation of yield volatilities over time and can range as high as 10 percent. Each of the
simulation samples lasts 30 years and features lower-bound episodes by design of the simulation. Panel (b)
of Figure B.3 shows the average term structures of yields and volatilities across simulations. The average
yield curve is upward sloping and the average volatility curve is downward sloping—consistent with stylized
facts in the U.S. data. Appendix III provides a more detailed description of the linear-rational model, the
estimates that we use, and the procedure to simulate yield samples from the model.
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Figure B.3: Simulated Yields
Panel (a): the time series of yields with 1 month, 5 years and 10 years to maturity in the first simulated
sample. Panel (b): the average yields and the average yield volatilities in the first simulated sample.
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IV Implementation of Wu and Xia (2016)

Wu and Xia (2016) implement the short rate equation rt = max(r, st). For convenient estimation, it is
preferable that the short rate function be invertible. To circumvent this issue, we start with their NA
model generated at a daily frequency but that we implement with a monthly sampling frequency. In this
case, the one-month short rate can be inverted for all values of the shadow rate st. Assume that the daily
risk-neutral dynamics are given by:

Xt+1 = µQ + ρQXt + σεQt+1,

with εQt+1 ∼ N(0, I). As usual in this case, the shadow rate st = δ0 + δ′1Xt also defines the short rate
rt = max(r, st) where r is the lower bound. We choose the standard normalization µQ = 0 and ρQ with
Jordan form. This implies the monthly dynamics

Xt+1 = KQ
1 Xt + ΣεQt+1,

and forward rate starting at time n− 1 and maturing at time n given in closed form

fn−1,n,t = r + Sng

(
An +B′nXt − r

Sn

)
,

where g(z) = zΦ(z) − φ(z). Note that the forward rate pricing function can be easily inverted for the
purpose of estimation:

r + Sng
−1

(
fn,n+1,t − r

Sn

)
= An +B′nXt,

since g(·) is monotone and its inverse function exists. The coefficients Sn, An and Bn are given by

Sn =
n×30−1∑

i=(n−1)×30

σi, An =
n×30−1∑

i=(n−1)×30

ai, Bn =
n×30−1∑

i=(n−1)×30

bi, (B.26)

with ai, bi and σi given by:

an =δ0 −
1

2
δ′1

n−1∑
j=0

(ρQ)j

σ

n−1∑
j=0

(ρQ)j

′ δ1

b′n =δ′1(ρQ)n, σ2
n =

n−1∑
j=0

δ′1(ρQ)jσ(ρQ
′
)jδ1,

and where

ρQ =KQ
1

1/30
, δ′1 = ι′

(
29∑
n=0

ρQ
n

)−1

,

vec(σ) =

(
29∑
i=0

ρQ
i ⊗ ρQi

)−1

vec(Σ),

δ0 =
1

2
δ′1

 29∑
n=0

n−1∑
j=0

(ρQ)j

Σd

n−1∑
j=0

(ρQ)j

′ δ1 + rQ∞,
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so that, at the monthly frequency, the model is fully characterized by the parameter set {K0,K1,Σ, r
Q
∞,K

Q
1 }.

V Additional Simulation Results

Volatility forecasts Table B.1 reports the performance volatility forecasts. First, the volatility compar-
ison between the SV-Bnd model and other models is consistent with Sharpe ratio results. The SV-Bnd model
consistently delivers the best volatility forecasts over the full sample, for all combinations of horizons and
bond maturities. The results are not surprising, since the SV-Bnd model has a built-in stochastic volatility
construction. This model is able to bring down the RMedSE substantially relative to the Gna benchmark,
by as much 50-70 percent in many cases. The magnitude of these gains underlines the importance of
time-varying volatilities.

Second, in contrast with the Sharpe ratio results, there is no clear winner between the volatility forecasts
from the ND Bnd and the NA Bna in the full sample results. If anything, the Bnd model seems to do a
better job at the one-year forecasting horizon. There is no clear winner close to the lower bound either.
In fact, it is remarkable that the volatility forecasts from the Bnd and Bna deliver similar performances
relative to SV-Bnd forecasts, in lower-bound samples, and even better performances for a good number of
horizon and bond maturity combinations.

This is remarkable because both models assume constant variances in the state dynamics. The
volatility forecasts around the lower bound clearly show the effect of the volatility compression (see e.g.,
Christensen and Rudebusch 2014; Kim and Priebsch 2013) arising because of the convexity of the (non-linear)
transformation between forwards and shadow forwards. Intuitively, as the shadow forwards venture deep
into the negative region, the corresponding forwards have little room to “wiggle”, thus their conditional
volatilities are “compressed” toward zero. On the other hand, when far away from the lower bound, the
forwards inherit the constant variance property of the shadow forwards.

Yield forecasts Table B.2 reports each model’s performance. First, it is remarkable that the SV-Bnd
delivers strictly superior full-sample forecasts, and relative to every other model that we consider. The
improvements range around 15-25 percent relative to the NA Gaussian and Black models and around 10-20
percent for the Bnd model. What is remarkable is that the improvements in the forecasts of yields must be
attributed to better forecasts of yield volatilities, which is what distinguishes the SV-Bnd model from the
others.

Recall from Table B.1 that, across the full sample results, the SV-Bnd model captures the volatility
dynamics particularly well. In a typical maximum likelihood estimation, it is well known that (i) the
variance of forecast errors depends on the variance of the parameter estimator and (ii) that controlling
for conditional variance reduces the variance of the parameter estimator (e.g., GLS). Intuitively, ex ante
noisier signals have less influence on the estimation. Knowledge of the volatility dynamics may lead to
smaller weights in the likelihood function to forecast errors around heightened volatility. In contrast,
constant-variance models assign the same weights to forecast errors observed during period of high and low
volatility, thereby treating noisy signals and high quality signals equally.

In this light, the ability to match volatility dynamics over the full sample results likely explains the
difference between the performances of the Bnd and SV-Bnd models. By that logic, the differences should be
small when these two models produce similar volatility forecast performances. We can check this prediction
in the simulations. Indeed, we find the performances of yield forecasts are similar in the lower-bound
samples, precisely when Table B.1 shows that the Bnd model produces accurate volatility forecasts. The
“compression” channel seems to endow the Bnd model with as much econometric efficiency gain as the
SV-Bnd model. In fact, during the lower-bound episodes, the Bnd model seems to do a better job at yield
forecasting for the shorter bond maturities (1 month and 2 years). Interestingly, these are essentially the
categories over which the Bnd model provides better volatility forecasts.
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It would seem that the same logic should apply to the Bna model. Turning to a direct comparison
between the NA and ND Black style models, it is interesting to note that the Bnd model is the winner in
lower-bound results for almost all horizon and maturity combinations. This difference in performance likely
reflects the type of tension inherent in the Bna model (the tension between the scaling parameter Sn and
the volatility parameters of the model). We note that the improvements of the Bnd model, relative to the
Bna model, are more sizeable and concentrated in results close to the lower bound.

Biases and Correlations in Forecast Errors Table B.3 reports the bias in yield forecasts in
Panel (a) and the bias in volatility forecasts in Panel (b). The first observation from Equation (B.3) is
that the NA models have the largest full-sample biases, especially for longer maturities and longer horizons.
By contrast, the SV-Bnd model has the smallest biases across full-sample results, except for three cases
in Panel (a) and one case in Panel (b). The Bnd model offers mixed results. The biases in its volatility
forecasts are closer to the flexible SV-Bnd model but the biases in its return forecasts are closer to the NA
models.

Consider the Gna model. Its return forecast biases are large and negative but its volatility forecast
biases are large and positive. From Equation (10), this may explain why the Gna Sharpe ratio estimates
seem to offer accuracy close to the ND models while, at the same time, offering volatility forecasts that
are much less accurate. In this case, the pattern in the biases compensates for the poor accuracy in the
denominator of the Sharpe ratio.

Consider next the Bna model. Its return and volatility forecast biases are both large and negative. From
Equation (10), this may explain why the Bna model’s conditional Sharpe ratio forecasts offer the lowest
accuracy while, at the same time, offering yield forecasts and volatility forecasts that are more accurate
than the Gna model, and not so different from that of the Bnd model. In this case, the pattern in the
biases substantially aggravates the accuracy of Sharpe ratio estimates. Finally, Equation (10) suggests that
the correlation between yield forecasts and volatility forecasts can also affect the accuracy of Sharpe ratio
estimates. In unreported results, we find that the correlations are generally negative but relatively small
(e.g., between around -0.2 and 0.2 for NA models).

VI Equation 10

Define the forecast error fej(x) and the mean squared forecast error msfej(x) for some forecast x from
model j:

fej(x) ≡ (xj − x0)

msfej(x) ≡ E0[fej(x)2] = E[(xj − x0)2|x0],

where the expectation operator E0[·] conditions on the known moments from the simulation, xj is the
forecast from model j and x0 is the know true forecast. We ignore the time subscript for simplicity. We
have that:

fej(SR) =
xrj
σj
− xr0

σ0
=
σ0xrj − σjxr0

σjσo

=
1

σj
(fej(xr)− SR0fej(σ)) , (B.27)

so that

fej(SR)2 =
1

σ2
j

(
fej(xr)

2 + SR2
0fej(σ)2 − 2SR2

0fej(xr)fej(σ)
)
. (B.28)
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(a) Return Forecast Bias

Entire Sample ZLB Sample

h m Gna A1na Bna Bnd SV-Bnd Gna A1na Bna Bnd SV-Bnd

3-mth

1-mth -1.1 -1.1 -1.6 0.6∗ 3.2 -2.2 −0.5∗ -3.2 3.4 3.7
2-yr -3.5 -4.0 -3.9 -2.2 0.6∗ -4.3 -4.3 -4.1 0.1∗ 1.2
5-yr -5.3 -5.4 -6.3 -4.5 −1.6∗ -4.8 -5.4 -5.8 -2.0 0.1∗

10-yr -6.0 -5.3 -6.1 -5.3 −2.7∗ -5.2 -5.5 -4.9 -3.2 −1.5∗

6-m

1-mth -2.4 -2.5 -3.3 0.2∗ 6.2 -3.2 −0.6∗ -4.5 4.5 7.7
2-yr -7.3 -7.3 -8.3 -5.1 0.1∗ -7.5 -7.0 -8.5 −0.3∗ 1.9
5-yr -10.8 -10.4 -12.1 -8.8 −4.1∗ -8.8 -9.5 -10.2 -3.7 −0.7∗

10-yr -12.0 -10.4 -11.8 -10.4 −6.3∗ -9.4 -10.3 -9.6 -7.3 −3.6∗

12-mth

1-mth -8.4 -8.0 -8.5 −2.9∗ 6.7 -9.3 −4.0∗ -8.4 5.7 13.1
2-yr -16.4 -16.2 -17.2 -11.9 −2.7∗ -12.9 -12.8 -16.1 −1.7∗ 3.0
5-yr -22.9 -20.3 -23.7 -18.8 −7.8∗ -17.0 -17.3 -19.8 -10.0 −2.5∗

10-yr -22.2 -20.5 -22.3 -21.1 −12.0∗ -17.3 -18.3 -19.6 -14.7 −7.6∗

(b) Volatility Forecast Bias

Entire Sample ZLB Sample

h m Gna A1na Bna Bnd SV-Bnd Gna A1na Bna Bnd SV-Bnd

3-m

1-mth 37.3 47.0 −12.0∗ -2.4 -0.3 68.9 82.0 −6.5∗ -0.5 -1.7
2-yr 21.1 26.5 −14.4∗ 2.6 1.6 35.8 42.0 −12.7∗ 0.8 0.3
5-yr 12.8 15.3 −13.9∗ 6.0 3.0 24.2 23.5 −10.5∗ 8.2 2.5
10-yr 9.0 8.7 −5.6∗ 7.9 3.8 15.3 10.2 −2.6∗ 10.3 3.5

6-m

1-mth 40.5 54.7 −23.9∗ -7.9 -4.0 74.2 90.9 −19.7∗ -7.4 -7.0
2-yr 25.2 32.4 −25.1∗ 0.0 0.6 40.4 47.7 −24.4∗ -3.4 -3.3
5-yr 14.0 19.9 −20.9∗ 4.6 2.5 25.2 25.9 −20.3∗ 4.0 -0.2
10-yr 10.7 9.3 −9.8∗ 8.0 3.8 16.6 9.2 −8.7∗ 8.6 1.4

12-mth

1-mth 37.6 56.5 −44.4∗ -14.7 -8.6 67.0 85.1 −44.8∗ -21.2 -16.2
2-yr 23.8 34.6 −40.2∗ -6.3 -1.2 38.6 49.8 −42.5∗ -12.4 -9.5
5-yr 14.6 21.2 −32.5∗ 1.3 0.8 25.7 26.4 −34.7∗ -3.7 -5.2
10-yr 9.1 10.1 −18.8∗ 5.2 1.2 13.9 6.1 −19.7∗ 3.7 -3.6

Table B.3: Return Forecast Bias
Median bias (bps) between model-implied forecasts and true forecasts for returns in Panel (a) and volatility
in Panel (b). Gna and Bna refer to the NA Gaussian and Black models, respectively. Bnd and SV-Bnd refer
to the ND Black models with and without BEKK volatility, respectively. Forecast horizons are 3, 6, and 12
months and maturities are 1 month and 2 years, 5 years, and 10 years. The symbol ∗ indicates the best
performance for each combination of horizon, maturity, and sample. The lower-bound sub-samples are
defined as the collections of dates for which the 1-month rate is 25 bps or less.
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Suppose that time-t squared Sharpe ratio forecast errors fej(SR)2 are conditionally independent from
time-t variance of yields σ2

j . Then, we have that:

msfej(SR) =
1

E0[σ2
j ]

(
msfej(xr) + SR2

0msfej(σ)− 2SR2
0E0[fej(xr)fej(σ)]

)
=

1

E0[σ2
j ]

(
msfej(xr) + SR2

0msfej(σ) + 2SR0E0[fej(xr)]E0[fej(σ)]− 2SR0cov(fej(xr), fej(σ)
)
, (B.29)

which yields to Equation (10) with the appropriate coefficient definitions. Therefore, biases that have the
same signs or forecast errors that are negatively correlated increase the Sharpe ratio forecast errors for
model j.
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