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Abstract 

Sampling units for the 2013 Methods-of-Payment Survey were selected through an 
approximate stratified random sampling design. To compensate for non-response and 
non-coverage, the observations are weighted through a raking procedure. The variance 
estimation of weighted estimates must take into account both the sampling design and the 
raking procedure. We propose using bootstrap resampling methods to estimate the 
variance. We find that the variance is smaller when estimated through the bootstrap 
resampling method than through Stata’s linearization method, where the latter does not 
take into account the correlation between the variables used for weighting and the 
outcome variable of interest.  
 

JEL classification: C83 
Bank classification: Econometric and statistical methods 

Résumé 

Dans le cadre de l’Enquête sur les modes de paiement de 2013, les unités 
d’échantillonnage ont été sélectionnées à partir d’un plan d’échantillonnage stratifié 
aléatoire simple. Pour compenser la non-réponse et la non-couverture, les observations 
sont pondérées selon la procédure d’ajustement proportionnel itératif. L’évaluation de la 
variance des estimations pondérées doit tenir compte du plan d’échantillonnage et de la 
procédure d’ajustement proportionnel itératif. Les auteurs proposent d’utiliser la méthode 
de rééchantillonnage bootstrap pour évaluer la variance. L’étude montre que la variance 
estimée grâce à cette méthode est inférieure à celle obtenue avec la méthode de 
linéarisation propre au logiciel Stata, laquelle ne tient pas compte de la corrélation entre 
les variables utilisées pour la pondération et la variable de résultat étudiée. 
 
 
Classification JEL : C83 
Classification de la Banque : Méthodes économétriques et statistiques



1 Introduction

The Bank of Canada needs to understand and monitor Canadians’ demand for cash. Because
cash is an anonymous payment and it is difficult to obtain detailed characteristics of the cash
users from the aggregate data, the Bank of Canada undertook the 2013 Methods-of-Payment
(MOP) survey, which is a follow-up to the 2009 MOP (Arango and Welte 2012).

The 2013 MOP survey is designed to measure Canadian adult (over 18 years of age) con-
sumers’ attitudes toward and usage of different payment instruments, including cash, credit and
newer methods such as the contactless feature of credit cards. A third party collected the data
using an approximate stratified random sampling design. Henry, Huynh and Shen (2015) give
an overview of the main results from the survey. Vincent (2015) constructs calibrated weights
using the raking procedure.

This report serves as a technical companion to Henry, Huynh and Shen (2015) and proposes
an approach to estimate the variances of the weighted means and proportions used in Henry,
Huynh and Shen (2015). Variance estimates are crucial for building confidence intervals to
assess the dispersion and for implementing statistical inferences to test various hypotheses.

In general, survey variance estimates depend on the specific weighting procedure, not just
on the numerical values of the weights: variance estimates that disregard the weighting pro-
cedure are often biased. Hence an unbiased estimation method must incorporate two sources
of randomness: (1) from the sampling design, which, in our case, is measured by the selection
probability (the design weight) induced by stratified random sampling; and (2) from the rak-
ing procedure, which arises from adjusting the sample counts to match the population counts
(calibrated weights).

If the sample units have full response and full coverage, we can simply use the inverse of the
selection probability because our weights, and the variance estimates, will be straightforward
to obtain. However, to adjust for non-response or non-coverage, additional modifications must
be made to the weights through calibration. As a result, the final weights will depend on the
particular calibration methods, such as non-response adjustment, post-stratification or raking.
These methods will affect the variances of weighted estimates because calibrated weights are
functions of the sample sizes (and not the population sizes) of the strata used for calibration,
which are, in fact, random variables. If we ignore the calibration procedure, the confidence
intervals will be conservative (Lu and Gelman 2003).

We propose using a bootstrap resampling method to take into account the effect of the
raking procedure and to compute the variances of weighted estimates from the survey ques-
tionnaire (SQ) component of the 2013 MOP survey. We find that the variance is smaller when
estimated with the bootstrap resampling method than with Stata’s linearization method. Our
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reason for choosing resampling over linearization is because the linearization method can be
very difficult to implement due to the presence of nuisance parameters, such as the joint selec-
tion probability of two sampling units in the same stratum. The resampling method circumvents
the requirement of explicitly evaluating the variance formula.

In Section 2, we discuss the different linearization variance estimates for design weights,
post-stratification weights and raking weights. In Section 3, we choose our bootstrap re-
sampling method among the various resampling methods. Further, instead of directly recom-
puting the statistics for each resample, we recompute the calibrated weights (replicate raking
weights) for each resample.

In Section 4, we take a range of alternate variance estimates by methods such as lineariza-
tion as benchmarks without specifying strata and linearization without correcting for the raking
procedure. We do this so we can investigate the sources of discrepancies between different es-
timates. We focus on two variables: the cash on hand continuous variable and the contactless

(tap-and-go) credit usage binary variable.
Section 5 concludes. In Appendix A, we provide a suggested workflow for generating rep-

licate raking weights based on the raking procedure for Stata implementation. In Appendix B,
we justify the raking procedure for the dual-frame survey design used in the 2013 MOP survey.

2 Variance Estimation Through Linearization

When discussing variance estimation of weighted total estimates, we follow the convention
of denoting the finite population by U and the sample drawn from it by S. For a given Ca-
nadian population U of individuals indexed by i = 1, ..., N , we are interested in estimating
the population total T (Y ) of a variable Y (e.g., if Y is a continuous variable for the value of
an individual’s cash on hand, then T (Y ) is the total value of cash on hand for the Canadian
population. Similarly, if Y is a binary variable indicating usage of the contactless (tap-and-go)
feature of a credit card, then T (Y ) is the total number of Canadians using the contactless credit
feature of a credit card):

T (Y ) ≡
∑
i∈U

Yi. (1)

We are focusing on estimating the population total because many other population quant-
ities of interest can be written in terms of T (Y ). For example, the population mean (e.g., the
average value of a Canadian’s cash holdings) can be written as Y ≡ T (Y )

T (1)
, where Y is the vari-

able for the value of cash holdings and T (1) is the population size for the 2013 MOP survey.
Similarly, a subpopulation mean (e.g., the mean cash withdrawal of Canadian females) can be
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written as Y D ≡ T (ZY )
T (Z)

, where Z = 1 if an individual is female and Z = 0 otherwise.
Regardless of the weights used (either design or calibrated weights), the population total

T (Y ) can be estimated as the total of the weighted sample variable yj (here the sample quant-
ities are denoted by lowercase letters):

tA(y) ≡
∑
j∈S

wAj yj, (2)

where for individual j, wAj with A ≡ {D,PS,R} denote different types of weights: wDj is the
design weight, and wPSj and wRj are post-stratification and raking weights, respectively.

2.1 Design weights

The sampling design used for the 2013 MOP SQ approximates stratified random sampling. The
third-party survey company determines the sample size of each stratum based on the expected
response rate, and sampling units in each stratum are selected independently.

Let πj be the selection probability for individual j, which is the probability that individual
j is included in the sample. Assuming stratified random sampling, the Horvitz-Thompson
estimator of T (Y ) is given by

tD(y) ≡
∑
j∈S

1

πj
yj

=
∑
j∈S

wDj yj, (3)

where the design weight wDj = 1/πj is the inverse of the probability individual j will be
selected. Note that the wDj is fixed (non-random) and known before the survey is conducted. It
is usually computed as the ratio between the census stratum count and the service-agreement
targeted count.

The variance estimate of tD(y) is

V̂ ar
[
tD(y)

]
≡
∑
k,l∈S

πkl − πkπl
πkl

yk
πk

yl
πl
, (4)

where πkl is the probability of selecting the pair of sampling units (k, l).
Due to non-response, however, the sample may have non-coverage (or under/over-coverage).

We therefore need to calibrate the selection probabilities to account for non-response and non-
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coverage. The weights are usually calibrated based on information from external sources.1 For
the 2013 MOP SQ, these external sources are the 2011 Census for the post-stratification and
the 2012 Canadian Internet Use Survey (CIUS) for the raking. The variables that we select
from the 2011 Census are gender, age and region, while the control variables from the 2012
CIUS in Vincent (2015) include the “Econ Plus” set of variables: marital status nested within
region; age category nested within mobile phone ownership; age category nested within online
purchase; income category nested within education, gender, home ownership; and employment
status nested within region.

In the next subsection, we will discuss how to calibrate the design weights through either
post-stratification or raking, which are both random variables, to compensate for non-response
and non-coverage.

2.2 Calibrated weights

Calibrated weights are usually accomplished through two general methods: post-stratification
and raking. Both methods are able to account for non-response2 and non-coverage. In contrast
to the non-random design weights, calibrated weights are random (Lu and Gelman 2003).

2.2.1 Post-stratification weights

Post-stratification adjusts the design weights to make the weighted data conform to the joint
distribution of the post-strata variables in the external source. Creating post-stratification
weights consists of breaking down the 2011 Census into post-stratification cells and then ad-
justing the design weights within each corresponding cell in the survey data (see Appendix A,
Practical Implementation, Step 1). Specifically, for unit j in the post-stratification cell Ck, the
post-stratification weight can be written as

wPSj = wDj

∑
i∈U 1(i ∈ Ck)∑

l∈S w
D
l 1(l ∈ Ck)

, (5)

where 1(·) is an indicator function taking the value 1 when its argument is true and 0 otherwise.
Notice that the weights wPSj are random variables because they depend on the sizes of Ck ∩ S,

1 Another type of information, not from external sources, is the sample distributions of the variables. For
example, using sample distributions of auxiliary variables from both respondents and non-respondents, logistic
regression can be used to develop weights adjusted for non-response. Especially when a set of categorical vari-
ables is included, logistic regression weights are similar to raking weights (Kalton and Flores-Cervantes 2003).
However, this alternative method is not pursued in the 2013 MOP SQ weighting.

2 For the weight calibration to be successful in reducing non-response bias, the control variables need to be
correlated with the response propensity or the outcome variables or both.

5



which are random. Then the weighted total estimator is

tPS(y) ≡
∑
j∈S

wPSj yj. (6)

Kolenikov (2014) suggests that the estimated variance of tPS(y) is

V̂ ar
[
tPS(y)

]
≡
∑
k,l∈S

πkl − πkπl
πkl

yk − x′kb
PS

πk

yl − x′lb
PS

πl
, (7)

where

bPS ≡

(∑
j∈S

wPSj xjx
′

j

)−1(∑
j∈S

wPSj xjyj

)
. (8)

The vector bPS has the same dimension as xj and

x′j ≡ (δ1j, δ2j, ..., δHj) ,

where δl,j = 1 if the sampling unit j is in the post-stratification cell l and 0 otherwise, and H
is the number of post-stratification cells.

2.2.2 Raking weights

Since the post-stratification method adjusts every cell of a multi-way table, it can result in cells
with zero or very small counts. In contrast, the raking method adjusts only the marginals, or
the low-level interactions.3 Because there are many heuristic materials for the raking method,
especially for its iterative proportional fitting algorithm, we omit the background introduction
here. Readers interested in the raking will find more information in the 2013 MOP SQ weight-
ing manual (Vincent 2015).

We frame the raking method as a one-step constrained minimization problem. The raking
weights,

{
wRj
}
j∈S , are computed by minimizing the objective function

∑
j∈S

[
wj ln(wj/w

D
j )− wj + wDj

]
, (9a)

such that
∑
j∈S

wjxj = T(X), (9b)

3 Low-level interactions are usually included by nesting two control variables; for example, nesting marital
status within region (Vincent 2015).
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where T(X) =
∑

i∈U xi is the population total of control variables X. The objective func-
tion is the discrepancy between the design weights wDj and raking weights wRj . On the right-
hand side of the constraint are known or high-quality survey population marginal totals.4 See
Appendix A, Practical Implementation, Step 2.

The resulting weighted total estimator is

tR(y) ≡
∑
j∈S

wRj yj. (10)

If the vector X of external control variables is used for raking, then Kolenikov (2014)
suggests that the estimated variance of tR(y) is

V̂ ar
[
tR(y)

]
≡
∑
k,l∈S

πkl − πkπl
πkl

yk − x′kb
R

πk

yl − x′lb
R

πl
, (11)

where

bR ≡

(∑
j∈S

wRj xjx
′

j

)−1(∑
j∈S

wRj xjyj

)
. (12)

The vector bR has the same dimension as xj and

x′j =
(
δ
(1)
1j , ...δ

(1)
F1j
, δ

(2)
1j , ..., δ

(2)
F2j
, ..., δ

(H)
1j , ..., δ

(H)
FHj

)
,

where δ(l)kj = 1 if the sampling unit j is in the category k of the l-th control variable and
0 otherwise, Fl is the number of categories of the l-th control variable, and H is the number of
external control variables X.

Notice that the above expression is based on Deville and Särndal (1992), where they as-
sumed

∑
j∈S w

D
j xj ≈ T(X); that is, the estimator of T(X), obtained by applying the design

weights (wDj ), is consistent. If this assumption is false, a more appropriate variance formula

4 Although the 2012 CIUS survey is calibrated to the 2011 Census, we do not consider the sampling variability
of the population marginal totals from the CIUS because the sample size of the CIUS, at 22,615 individuals, is
much larger than the 2013 MOP sample size. When such a large-scale survey is used for calibration, the sampling
variability of the population marginal totals has a small impact and is usually ignored (Kolenikov 2014).
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can be found in D’Arrigo and Skinner (2010), who rewrite

V ar
[
tR(y)

]
= V ar

[∑
j∈S

wRj yj

]

≈ V ar

[∑
j∈S

1

πj

[
yj − x′jb

R
]]

(13a)

or

≈ V ar

[∑
j∈S

1

πj
exp(x′jλ̂)

[
yj − x′jb

R
]]

(13b)

where λ̂ are the Lagrange multipliers, which solve the constrained minimization problem.
Hence the linearization variance estimator can be obtained by approximating V ar

[∑
j∈S w

R
j yj

]
by V ar

∑
j∈S

[
1
πj
zj

]
for a linearized variable zj , where zj is either

[
yj − x′jb

R
]

or exp(x′jλ̂)[
yj − x′jb

R
]
.

Expression (13a) with zj =
[
yj − x′jb

R
]

is estimated by the V̂ ar
[
tR(y)

]
in equation (11),

while expression (13b) is preferred under the non-response situation, when the assumption∑
j∈S w

D
j xj ≈ T(X) is less likely to hold. D’Arrigo and Skinner (2010) further demon-

strate that these approximations are applicable to a stratified sample design with replacement
sampling of clusters within strata.5

3 Variance Estimation Through Resampling

The above variance estimators that allow for calibrated weights are difficult to use in practice.
First, these estimators use the selection probabilities πj or, equivalently, the design weights
wDj . Hence these estimators require the survey data set to include both calibrated weights
and design weights, which may confuse users. Second, the end-user of the data set must be
given the variables used for calibration, which may not be possible if confidential variables
were used. Third, these estimators are not implemented in existing software packages. Finally,
these variance estimators require joint selection probabilities πkl, which are rarely computed in
practice. Due to these complications, variance estimations of weighted totals usually proceed
along the lines of resampling methods (Shao 1996, Kolenikov 2010).

There are three main resampling methods: balanced repeated replication (BRR), the jack-

5 Besides the “weighted residual” linearization approach described here, another possible approach is the
hybrid linearization approach proposed by Lu and Gelman (2003), who decompose the variance conditioning on
the sample size of post-strata and then linearize the variation of weights vector.
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knife and the bootstrap (Rust and Rao 1996). Each involves creating multiple replicates of the
data set by repeatedly sampling from the original sample. For example, the jackknife procedure
for the stratified random design proceeds as follows: for stratum h, delete the k-th sampling
unit and inflate the weights of the remaining units in stratum h to compensate for the deleted
unit. Then perform the raking procedure on the remaining units and generate the hk-th replic-
ate estimate tR(y)(hk). Repeat the above steps for all numerations of h and k. The resulting
jackknife variance estimate is

V̂ arJack
[
tR(y)

]
≡

L∑
h=1

nh − 1

nh

nh∑
k=1

{
tR(y)(hk) − t̃R(y)

}2

(14)

where t̃R(y) ≡
∑L

h=1

∑nh

k=1 t
R(y)(hk)/

∑L
h=1 nh, L is the number of strata and nh is the number

of sampling units in stratum h.
As for the bootstrap method, the parameter tR(y)(b) is estimated in each b-th resampled

data set using the same estimation procedure as for the original sample. The bootstrap variance
estimator is then defined as

V̂ arBoot
[
tR(y)

]
≡ 1

B

B∑
b=1

{
tR(y)(b) − tR(y)

}2

(15)

where B is the number of bootstrap replicates and tR(y) ≡
∑B

b=1 t
R(y)(b)/B. To avoid the

bias caused by small sample strata sizes nh, we follow Rao and Wu’s rescaling bootstrap,
where scaled pseudo-values are internally generated (Rao and Wu 1988). The expression for
these scaled pseudo-values can be found in Kolenikov (2010).

3.1 Choice of resampling method

We will focus on the bootstrap resampling method.6 We do not use BRR because it is more suit-
able for a stratified clustered sampling design, which was not used in our 2013 MOP SQ. The
main reason that we choose the bootstrap over the jackknife is that the traditional delete-1 jack-
knife variance estimator will be inconsistent for non-smooth functions (e.g., sample quantiles).
The consistent delete-d jackknife method requires a non-trivial specification for d, where there
is a complicated interplay between the smoothness of the estimate and the parameter d 7.

The bootstrap, on the other hand, will generally work for these non-smooth estimates,
as discussed in Ghosh et al. (1984). Besides the major advantage of the bootstrap over the

6 Statistics Canada uses bootstrap procedures extensively. For example, the bootstrap replicate weights method
is used in CIUS to estimate the coefficients of variation.

7 We thank May Liu for suggesting this point.
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jackknife for non-smooth estimates, we prefer the bootstrap for two other reasons: (1) Com-
putational burden: As pointed out in Kolenikov (2010), the replications of the delete-d jack-
knife increase notably with d, especially when applied to list-based establishment surveys; (2)
Approximating distributions: The bootstrap can be used for estimating distributions and con-
structing more accurate one-sided confidence intervals, while the jackknife is typically only
used for estimating variances.

Instead of recreating the sample in each replicate, we implement the more practical method
of generating replicate weights using the ipfraking and bsweights commands in Stata. These
replicate weights protect the privacy of sampling units and have the advantage of incorporating
strata information as well as adjustments for non-response and non-coverage. The B sets of
replicate raking weights are provided with the 2013 MOP SQ data set.

The construction of replicate raking weights under the bootstrap involves first taking the
initial weights. Then a set of initial replication weights is constructed according to the bootstrap
under stratified random sampling design. For example, if a unit from a replicate is not sampled,
a zero weight is assigned to it and then the weights of other units in the same stratum are
expanded to compensate. Next the raking method is applied to each of these sets of initial
weights, generating the replicate raking weights. See Appendix A, Practical Implementation,
Step 3.

In the report, the bootstrap sample size is set to be n−1, in accordance with McCarthy and
Snowden (1985) who propose this sample size for bootstrap with replacement. Furthermore,
Kolenikov (2010) recommends the number of bootstrap replicates to be at least as large as
the design degrees of freedom, so we can choose B to be 300. As shown in Figure A10 of
Appendix A, estimated variance stabilizes after 300 bootstrap replications.

4 Results

Tables 2 to 6 show variance computations using different weights (design versus calibrated)
and variance estimation methods (linearization versus resampling). We have calculated the
variances of estimators for population totals, population means and the subpopulation means
of various demographic strata.

The tables show results for the variables cash on hand and tng credit year. The first is
the amount of cash the respondent has in his or her wallet, purse or pockets when completing
the survey. Note that in Chen et al. (2014), the subpopulation means of cash on hand across
different subsamples (online and offline) of the 2013 MOP SQ are computed and compared.

The second, tng credit year, is a binary variable indicating whether the respondent has
used the contactless feature of a credit card in the past year. Taking the weighted total of this
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variable, we find an estimate of the total number of people in the population that used the
feature; taking the weighted mean, we obtain an estimate of the proportion of the population
that has used it.

In all tables, the variances in the first three columns are calculated using Stata’s linearization
method, which does not take calibration into account. The variances in the last column are
calculated by the bootstrap resampling method. Notice that there is a very small difference
between the sample sizes for the two variables due to missing values, which will have a minor
impact on imputation.

4.1 Comparison of the three linearization variance estimates

The differences among the estimated variances in the first three columns (those calculated
by Stata’s linearization method) are mainly due to the values of weights because the same
formula is used in each case. From box plots of the weights displayed in Figure 1, it is clear
that the raked weights are much more widely dispersed and contain more extreme values than
the post-stratification weights. The same conclusion can be drawn from examining Table 1,
which presents the 50th and 95th percentiles of the weights for various subsets of the sample.
The table also shows that strata under-represented in the sample, such as the $85K+ income
category, are assigned higher weights by the raking procedure.

However, the effect of applying different weighting schemes also depends on the values
of the variable being estimated, given that Stata computes the linearized variance estimate
based on the weighted values of this variable (see notes to Tables 2 to 6). Figures 2 and 3
illustrate for cash on hand and contactless credit usage. The box plots in Figure 2 represent the
distribution by gender of the weighted cash on hand values (the product of cash on hand and
the weights). Comparing the design and post-stratification box plots, we see that cash on hand

is more widely dispersed using post-stratification weights than design weights for females,
while the opposite is true for males. Table 4 reflects this difference: The variance estimated
using post-stratification weights is larger than that using design weights for females (1.29 times
the design-weight variance) and smaller for males (0.90 times the design-weight variance).
Furthermore, the plots for raked weights indicate that applying them increases the dispersion
of weighted cash on hand for both males and females. This observation is again consistent
with the results in Table 4 because the variance estimate increases to 1.65 for females and 1.37
for males.

Figure 3 contains box plots by gender of the weighted values for contactless credit us-
age (the product of tng credit year and the weights). The distributions for males and females
are very similar, which is consistent with the male and female variance estimates in Table 4.
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Furthermore, comparing Figures 2 and 3, it is apparent that applying the raked weights signi-
ficantly increases the variation in tng credit year but not as much for cash on hand. This can
be seen because the box plots for raked weights are much wider than the design-weighted box
plots in Figure 3 but not in Figure 2. Upon examining the data, we find that respondents who
have used the contactless feature in the past year, those having a value of 1 for tng credit year,
are assigned very high raked weights. The 90th percentile of the raked weights for observations
with tng credit year equal to 1 is about 15,500, for example, compared to only 9,872 for the
post-stratification weights. These observations explain why, in Table 4, the variances for the
raked-weighted estimators (column 3) are much higher than those for the design-weighted and
post-stratification–weighted estimators (columns 1 and 2).

4.2 Comparison of the linearization and resampling variance estimates

When comparing the first column (design weights) and the fourth column (raked weights) in
Tables 2 to 6, we observe that the ratios are sometimes larger than one. This observation
does not contradict Deville and Särndal (1992), who claim that variances based on the raking
procedure will be smaller than those based on design weights (see equations (4) and (11)) if
T(X) ≈

∑
j∈S w

D
j xj. As pointed out by Kalton and Flores-Cervantes (2003), when there is

sizable non-response and non-coverage, the assumption of Deville and Särndal (1992) does
not hold, and the estimates based on the raked weights will reduce bias at the expense of an
increase in variance. Hence the ratios in the fourth column reflect the effect of non-response
on the variance estimates.8

Next, when comparing the third and fourth columns in Tables 2 to 6, we observe that
the resampling variance seems to be always smaller than the linearization variance based on
the raked weights. At first glance this observation is puzzling: since the resampling variance
captures the extra randomness from the weight adjustment procedure, this variance should be
larger instead of smaller. The explanation is related to facts well known in the propensity
score literature: The estimators based on the inverse of the non-parametric estimates of the
propensity score, rather than on the true score, achieve the semi-parametric efficiency bound
(Hirano, Imbens and Ridder 2003). In our current setting, we could say that the linearization
variance estimate treats the raked weights as true weights (as fixed design weights), while the
resampling variance estimate is using the information from the control variables in the raking
procedure. With the raked weights, the variances calculated by resampling are smaller than
those calculated by linearization.

8 In most payment surveys, variances are calculated by treating weights as fixed values (Angrisani, Foster and
Hitczenko 2013).
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4.3 Comparison of variance estimates with and without strata

Little difference exists between the variances calculated with and without strata, suggesting
that the design strata variables (gender, region, and age) are not very strong predictors of cash
on hand or contactless credit usage. Variances calculated with strata are commonly expected
to be smaller than those calculated without, as is generally the case for population variances
under proportional allocation (where strata sizes in the sample are proportional to those in the
population). However, this result does not hold for variances under disproportional allocation.
Further, it is always possible for a variance estimate from a particular sample to be larger under
stratified sampling than it is under simple random sampling if the sample has large within-
stratum sample variances (Lohr 2010).

For example, for some subpopulations, the estimated variances with post-stratification
weights are larger with strata than without, as shown in Tables 2 to 6. The reason lies with
the within-stratum sample variances and the values of the weights. It is noteworthy that
sample variance estimates are being compared instead of population variances and that propor-
tional allocation is not assumed with post-stratification weights. This is because the purpose
of post-stratification is to correct for the over-representation of some strata and the under-
representation of others. Therefore the variance after declaring strata could be higher because
strata with higher within-stratum sample variances are weighted more heavily. A linear regres-
sion of the post-stratification weights against the within-stratum standard deviation of cash on

hand shows that the weights and standard deviations do, in fact, exhibit a positive correlation,
with the coefficient statistically significant at the 1 per cent level.

5 Summary

If variances for weighted estimates are computed without considering the raking procedure,
the resulting confidence intervals will tend to be conservative. We therefore produce bootstrap
replicate raking weights in Stata and use these to estimate the variances of weighted estimates
from the 2013 MOP SQ.
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Figure 1: Box plots of weights

Raked weights

Post−stratification weights

 

0 2 4 6
Standardized values

Note: For each set of weights, a dot plot of the values is shown above a box-and-whisker plot. The whiskers end

at the 0.1 and 99.9 percentiles. The scale of the x-axis has been standardized by the mean of the raked weights.
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Figure 2: Box plots of weighted cash on hand by gender
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Note: The weighted values of cash on hand are shown. For each type of weight, a dot plot is shown above a

box-and-whisker plot. The whiskers end at the 0.1 and 99.9 percentiles. The scale of the x-axis has been

standardized by the mean of cash on hand weighted by the raked weights.
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Figure 3: Box plots of weighted tng credit year by gender
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Note: The weighted values of tng credit year (a binary variable) are shown. For each type of weight, a dot plot

is shown above a box-and-whisker plot. The whiskers end at the 0.1 and 99.9 percentiles. The scale of the x-axis

has been standardized by the mean of tng credit year weighted by the raked weights.
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Table 1: 50th and 95th percentiles of weights

Design Weights Post-Stratification Weights Raked Weights

50th 95th 50th 95th 50th 95th
Overall 7,235 7,235 7,128 10,395 4,221 25,169
Gender
Female 7,235 7,235 7,128 10,395 4,088 23,616
Male 7,235 7,235 7,060 11,278 4,365 25,917
Age

18–34 7,235 7,235 7,606 14,012 5,173 29,463
34–54 7,235 7,235 7,202 9,720 4,311 22,065
55+ 7,235 7,235 7,060 9,207 3,520 25,917

Income
<$45K 7,235 7,235 7,128 10,197 3,165 21,040

$45K–$85K 7,235 7,235 7,060 10,395 3,917 24,152
$85K+ 7,235 7,235 7,202 10,700 7,293 38,298
Region
Atlantic 7,235 7,235 7,202 10,700 7,293 38,298
Quebec 7,235 7,235 6,616 9,061 3,701 23,849
Ontario 7,235 7,235 6,464 10,395 3,789 22,198
Prairies 7,235 7,235 7,427 9,872 4,486 26,150

BC 7,235 7,235 7,764 13,407 4,622 29,420
Panel
CFM 7,235 7,235 7,128 10,197 4,558 29,420

Non-CFM 7,235 7,235 7,128 10,395 4,814 24,180
Online 7,235 7,235 7,128 10,395 3,704 22,126

* The panel or subsample refers to the way the respondents were recruited (CFM: recently responded to the
Canadian Financial Monitor (CFM) survey and invited by regular mail; Non-CFM: selected from an offline
panel of potential volunteers and invited by regular mail; Online: selected from an online panel of potential
volunteers and invited by email).

Note: The 50th and 95th percentiles of design, post-stratification and raked weights are shown. Raked weights

are trimmed at five times their mean during the raking process.
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Table 2: Total of cash on hand and tng credit year

Linearization Estimates* Resampling
Estimates

Design
Weights

Post-
Stratification
Weights

Raked
Weights

Raked
Weights

CASH ON HAND

Total 2.17E+09 1.00 1.02 1.02

Variance No Strata 9.79E+15 1.10 1.67 0.69

Variance Strata 9.67E+15 1.10 1.66 0.65

TNG CREDIT YEAR

Total 9.28E+06 1.02 0.93 0.93

Variance No Strata 4.31E+10 1.12 2.51 1.07

Variance Strata 4.15E+10 1.09 2.54 1.14

* Linearization estimates are produced with the linearization procedure in Stata, which simply assumes
a stratified random sample and does not take into account the weighting procedure. Hence all of the
linearization variance estimates (for population totals) are calculated as

∑L
h=1(1−fh) nh

nh−1
∑nh

i=1(yhi−
ȳh)2, where L is the number of strata, nh is the number of primary sampling units (PSUs) in stratum h,
(1 − fh) is the finite population correction for stratum h, fh is the sampling rate for stratum h, yhi is
the weighted value for PSU (h, i) and ȳh = 1

nh

∑nh

i=1 yhi (StataCorp 2013).

Note: All columns after the first have been divided by the value in the first column. The rows in italics show the

weighted point estimates, and all other rows show variance estimates. For example, the total cash on hand is

estimated to be 2.17E+09 under the design weights and 1.02*(2.17E+09) under the raked weights. The variance

for this estimate is 9.67E+15 under the design weights with the linearization method, taking into account the

strata, and 0.65*(9.67E+15) under raked weights with the resampling method, taking into account the strata.

Total number of contactless credit adopters is estimated by the weighted total of the binary variable

tng credit year. There are 3,663 respondents to the 2013 MOP survey, out of which 3,651 provided non-missing

data for cash on hand. Among these 3,651 consumers, 1,743 are males and 1,908 are females. There are 3,578

respondents who provided non-missing data for tng credit year. Among these 3,578 consumers, 1,699 are males

and 1,879 are females.
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Table 3: Mean of cash on hand and tng credit year

Linearization Estimates* Resampling
Estimates

Design
Weights

Post-
Stratification
Weights

Raked
Weights

Raked
Weights

CASH ON HAND

Mean 81.96 1.00 1.03 1.03

Variance No Strata 14.02 1.09 1.51 0.85

Variance Strata 13.86 1.10 1.51 0.83

TNG CREDIT YEAR

Proportion 0.36 1.02 0.93 0.93

Variance No Strata 6.43E-05 1.08 2.10 1.24

Variance Strata 6.20E-05 1.09 2.15 1.20

* Linearization estimates are produced with the linearization procedure in Stata, which simply assumes
a stratified random sample and does not take into account the weighting procedure. Hence all of the
linearization variance estimates (for population totals) are calculated as

∑L
h=1(1−fh) nh

nh−1
∑nh

i=1(yhi−
ȳh)2, where L is the number of strata, nh is the number of PSUs in stratum h, (1 − fh) is the finite
population correction for stratum h, fh is the sampling rate for stratum h, yhi is the weighted value for
PSU (h, i), and ȳh = 1

nh

∑nh

i=1 yhi (StataCorp 2013).

Note: All columns after the first have been divided by the value in the first column. The rows in italics show the

weighted point estimates, and all other rows show variance estimates. The proportion of contactless credit

adopters is estimated by the weighted mean of the binary variable tng credit year. There are 3,663 respondents

to the 2013 MOP survey, out of which 3,651 provided non-missing data for cash on hand. Among these 3,651

consumers, 1,743 are males and 1,908 are females. There are 3,578 respondents who provided non-missing data

for tng credit year. Among these 3,578 consumers, 1,699 are males and 1,879 are females.
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Table 4: Mean of cash on hand and tng credit year, by demographic category

Linearization Estimates* Resampling
Estimates

Design
Weights

Post-
Stratification
Weights

Raked
Weights

Raked
Weights

CASH ON HAND

GENDER

Female Mean 69.53 1.02 1.10 1.10

Variance No Strata 26.16 1.29 1.63 0.96

Variance Strata 25.97 1.29 1.65 0.97

Male Mean 95.57 0.98 0.98 0.98

Variance No Strata 29.98 0.90 1.39 0.85

Variance Strata 29.68 0.90 1.37 0.94

AGE

18–34 Mean 58.07 1.03 1.06 1.06

Variance No Strata 18.92 1.34 4.97 2.60

Variance Strata 19.01 1.34 4.96 2.61

34–54 Mean 68.54 1.01 1.02 1.02

Variance No Strata 11.38 1.04 1.68 1.26

Variance Strata 11.29 1.04 1.69 1.21

55+ Mean 112.91 1.00 1.05 1.05

Variance No Strata 83.81 1.12 1.00 0.71

Variance Strata 83.77 1.12 1.00 0.67

INCOME

<$45K Mean 74.99 1.00 1.01 1.01

Variance No Strata 47.72 1.17 0.67 0.54

Variance Strata 47.51 1.17 0.67 0.53

Continued on next page
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Table 4: Mean of cash on hand and tng credit year, by demographic category (continued)

Linearization Estimates* Resampling
Estimates

Design
Weights

Post-
Stratification
Weights

Raked
Weights

Raked
Weights

$45K–$85K Mean 89.50 1.00 1.06 1.06

Variance No Strata 36.29 1.01 2.55 1.43

Variance Strata 36.11 1.01 2.56 1.39

$85K+ Mean 82.40 0.99 1.00 1.00

Variance No Strata 21.12 1.04 2.93 1.32

Variance Strata 20.94 1.05 2.93 1.55

TNG CREDIT YEAR

GENDER

Female Proportion 0.33 1.02 0.95 0.95

Variance No Strata 1.18E-04 1.08 2.16 1.36

Variance Strata 1.15E-04 1.09 2.20 1.45

Male Proportion 0.39 1.01 0.91 0.91

Variance No Strata 1.40E-04 1.07 2.05 1.23

Variance Strata 1.34E-04 1.09 2.11 1.42

AGE

18–34 Proportion 0.40 1.00 0.88 0.88

Variance No Strata 2.63E-04 1.10 1.95 1.20

Variance Strata 2.54E-04 1.12 2.01 1.17

34–54 Proportion 0.35 1.02 0.99 0.99

Variance No Strata 1.64E-04 1.05 2.14 1.54

Variance Strata 1.57E-04 1.06 2.19 1.37

55+ Proportion 0.33 1.02 0.90 0.90

Variance No Strata 1.74E-04 1.07 2.13 1.33

Variance Strata 1.71E-04 1.08 2.17 1.36

Continued on next page
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Table 4: Mean of cash on hand and tng credit year, by demographic category (continued)

Linearization Estimates* Resampling
Estimates

Design
Weights

Post-
Stratification
Weights

Raked
Weights

Raked
Weights

INCOME

<$45K Proportion 0.28 1.03 0.74 0.74

Variance No Strata 1.39E-04 1.09 1.65 1.21

Variance Strata 1.37E-04 1.09 1.66 1.24

$45K–$85K Proportion 0.37 1.01 0.96 0.96

Variance No Strata 1.77E-04 1.07 2.25 1.46

Variance Strata 1.74E-04 1.07 2.28 1.35

$85K+ Proportion 0.48 1.01 0.91 0.91

Variance No Strata 3.12E-04 1.06 1.74 1.06

Variance Strata 3.09E-04 1.07 1.75 1.04

* Linearization estimates are produced with the linearization procedure in Stata, which simply assumes a
stratified random sample and does not take into account the weighting procedure. Hence all of the linear-
ization variance estimates (for population totals) are calculated as

∑L
h=1(1 − fh) nh

nh−1
∑nh

i=1(yhi − ȳh)2,
where L is the number of strata, nh is the number of PSUs in stratum h, (1 − fh) is the finite population
correction for stratum h, fh is the sampling rate for stratum h, yhi is the weighted value for PSU (h, i), and
ȳh = 1

nh

∑nh

i=1 yhi (StataCorp 2013).

Note: All columns after the first have been divided by the value in the first column. The rows in italics show the

weighted point estimates, and all other rows show variance estimates. The proportion of contactless credit

adopters is estimated by the weighted mean of the binary variable tng credit year. There are 3,663 respondents

to the 2013 MOP survey, out of which 3,651 provided non-missing data for cash on hand. Among these 3,651

consumers, 1,743 are males and 1,908 are females. There are 3,578 respondents who provided non-missing data

for tng credit year. Among these 3,578 consumers, 1,699 are males and 1,879 are females.
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Table 5: Mean of cash on hand and tng credit year, by region

Linearization Estimates* Resampling
Estimates

Design
Weights

Post-
Stratification
Weights

Raked
Weights

Raked
Weights

CASH ON HAND

Atlantic Mean 96.30 0.99 0.97 0.97

Variance No Strata 420.49 0.91 0.56 0.50

Variance Strata 418.01 0.92 0.56 0.53

Quebec Mean 85.47 1.02 0.89 0.89

Variance No Strata 100.11 1.35 0.31 0.34

Variance Strata 99.34 1.35 0.31 0.30

Ontario Mean 79.63 0.99 1.12 1.12

Variance No Strata 28.80 1.02 3.60 1.82

Variance Strata 28.38 1.02 3.62 1.84

Prairies Mean 80.74 1.00 1.08 1.08

Variance No Strata 21.81 1.28 2.74 1.76

Variance Strata 20.92 1.30 2.78 1.93

BC Mean 75.27 0.99 1.06 1.06

Variance No Strata 25.52 0.98 2.59 1.57

Variance Strata 24.86 0.99 2.61 1.41

TNG CREDIT YEAR

Atlantic Proportion 0.33 0.97 0.85 0.85

Variance No Strata 8.42E-04 1.03 2.16 1.48

Variance Strata 8.51E-04 1.04 2.16 1.66

Quebec Proportion 0.26 1.03 0.92 0.92

Variance No Strata 2.11E-04 1.12 1.97 1.06

Variance Strata 2.04E-04 1.13 2.03 1.30

Continued on next page
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Table 5: Mean of cash on hand and tng credit year, by region (continued)

Linearization Estimates* Resampling
Estimates

Design
Weights

Post-
Stratification
Weights

Raked
Weights

Raked
Weights

Ontario Proportion 0.45 1.00 0.94 0.94

Variance No Strata 1.87E-04 1.01 2.16 1.51

Variance Strata 1.85E-04 1.01 2.17 1.52

Prairies Proportion 0.32 1.05 0.92 0.92

Variance No Strata 3.73E-04 1.22 1.97 1.31

Variance Strata 3.72E-04 1.24 2.00 1.33

BC Proportion 0.36 1.01 0.91 0.91

Variance No Strata 4.66E-04 1.03 2.04 1.18

Variance Strata 4.63E-04 1.03 2.05 1.39

* Linearization estimates are produced with the linearization procedure in Stata, which simply assumes
a stratified random sample and does not take into account the weighting procedure. Hence all of the
linearization variance estimates (for population totals) are calculated as

∑L
h=1(1−fh) nh

nh−1
∑nh

i=1(yhi−
ȳh)2, where L is the number of strata, nh is the number of PSUs in stratum h, (1 − fh) is the finite
population correction for stratum h, fh is the sampling rate for stratum h, yhi is the weighted value for
PSU (h, i), and ȳh = 1

nh

∑nh

i=1 yhi (StataCorp 2013).

Note: All columns after the first have been divided by the value in the first column. The rows in italics show the

weighted point estimates, and all other rows show variance estimates. The proportion of contactless credit

adopters is estimated by the weighted mean of the binary variable tng credit year. There are 3,663 respondents

to the 2013 MOP survey, out of which 3,651 provided non-missing data for cash on hand. Among these 3,651

consumers, 1,743 are males and 1,908 are females. There are 3,578 respondents who provided non-missing data

for tng credit year. Among these 3,578 consumers, 1,699 are males and 1,879 are females.
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Table 6: Mean of cash on hand and tng credit year, by subsample

Linearization Estimates* Resampling
Estimates

Design
Weights

Post-
Stratification
Weights

Raked
Weights

Raked
Weights

CASH ON HAND

CFM Mean 84.01 1.00 0.99 0.99

Variance No Strata 23.65 1.04 1.84 1.04

Variance Strata 23.46 1.04 1.84 1.10

Non-CFM Mean 92.15 1.02 1.00 1.00

Variance No Strata 150.44 1.21 0.39 0.38

Variance Strata 150.45 1.21 0.39 0.30

Online Mean 75.46 0.99 1.08 1.08

Variance No Strata 26.17 0.98 3.01 1.75

Variance Strata 26.04 0.98 3.03 1.85

TNG CREDIT YEAR

CFM Proportion 0.39 1.01 0.89 0.89

Variance No Strata 1.81E-04 1.07 2.03 1.18

Variance Strata 1.79E-04 1.07 2.04 1.24

Non-CFM Proportion 0.35 1.03 0.95 0.95

Variance No Strata 3.27E-04 1.08 1.97 1.44

Variance Strata 3.24E-04 1.09 1.98 1.39

Online Proportion 0.33 1.02 0.95 0.95

Variance No Strata 1.42E-04 1.08 2.15 1.45

Variance Strata 1.40E-04 1.08 2.16 1.35

* Linearization estimates are produced with the linearization procedure in Stata, which simply assumes
a stratified random sample and does not take into account the weighting procedure. Hence all of the
linearization variance estimates (for population totals) are calculated as

∑L
h=1(1−fh) nh

nh−1
∑nh

i=1(yhi−
ȳh)2, where L is the number of strata, nh is the number of PSUs in stratum h, (1 − fh) is the finite
population correction for stratum h, fh is the sampling rate for stratum h, yhi is the weighted value for
PSU (h, i), and ȳh = 1

nh

∑nh

i=1 yhi (StataCorp 2013).
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Note: All columns after the first have been divided by the value in the first column. The rows in italics show the

weighted point estimates, and all other rows show variance estimates. The proportion of contactless credit

adopters is estimated by the weighted mean of the binary variable tng credit year. There are 3,663 respondents

to the 2013 MOP survey, out of which 3,651 provided non-missing data for cash on hand. Among these 3,651

consumers, 1,743 are males and 1,908 are females. There are 3,578 respondents who provided non-missing data

for tng credit year. Among these 3,578 consumers, 1,699 are males and 1,879 are females. The panel or

sub-sample refers to the way the respondents were recruited (CFM: recently responded to the Canadian Financial

Monitor (CFM) survey and invited by regular mail; Non-CFM: selected from an offline panel of potential

volunteers and invited by regular mail; Online: selected from an online panel of potential volunteers and invited

by email).
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Appendix A Practical Implementation

We implement variance estimation in Stata, a popular statistical software package. Referring
to Kolenikov (2010, 2014), we use the ipfraking and bsweights commands. Stata do-files
for replicating our process, and results are available upon request. In Table A1, we compare
the Rake command in R with the ipfraking command in Stata so that similar results can be
reproduced under R.

Step 1: Compute the initial post-stratification weight
First, we must specify the strata and the initial weight with which to begin the raking pro-

cedure. The raking procedure will minimize the discrepancy between the raked weights and
initial weights. Here we set the initial weights to be the post-stratification weights basewgt,
which equals the population stratum size divided by the number of respondents in the corres-
ponding stratum. This basewgt variable will be declared in the argument [pw=varname] in the
ipfraking command, which generates the raked weights.

The weights are also declared when setting the survey environment in Stata. For example,
the Stata output in Figure A1 shows an estimate of the cash on hand variable using the design
weights. To obtain this estimate in Stata, we declare the weight variable as well as the strata
used in the sampling design, which divide the population based on region, gender, and age.

Figure A2 shows the command for declaring post-stratification weights in Stata. The post-
strata variable, strata, contains identifiers for the strata to be used, and the postweight variable,
Count, contains the population counts for each stratum. Declaring these two variables is equi-
valent to using basewgt, the variable containing the post-stratification weights.

Step 2: Generate the raked weights
Note that raked weights for the entire sample are necessary for generating replicate raking

weights. Besides the initial post-stratification weights, the ipfraking command also requires us
to specify the population marginal totals of the control variables. Hence, as mentioned above,
we refer to the weighting manual and select the “Econ Plus” set of variables recommended
in Vincent (2015), which are marital status nested within region; age category nested within
mobile phone ownership; age category nested within online purchase; income category nested
within education, gender, home ownership; and employment status nested within region.

We trim the weights at five times their mean to avoid extreme weights. Assuming the total
calculated with the untrimmed weights to be the true value of total cash on hand, we compute
the mean squared error (MSE) for weights trimmed at different values. Figure A3 shows the
ratios of these MSEs to the MSE of the total estimate with untrimmed weights, which is the
estimated variance of the untrimmed total estimate for cash on hand. At truncation points
above five times the mean, the MSEs are all roughly equal to the MSE for the untrimmed

29



weights, and so trimming at five times the mean does not create a large difference in the MSE.
In the ipfraking command, we set the tolerance between raked and control totals to 0.01

and the procedure converges in 11 iterations. The diagnostic plots (Figure A4 bottom panel)
show that the discrepancies between weighted totals and control totals decrease rapidly and
change very little beyond the fourth or fifth iteration.

To test for robustness, we also rake with the tolerance at 0.001. In this case, the number of
iterations increases to 25. The weights change slightly but remain very similar to the weights
with tolerance 0.01, given that the correlation between the two sets of weights is about 1.00.
The high correlation can be seen in Figure A5, a scatter plot of the weights generated with
tolerance 0.01 and 0.001. A scatter plot of the weights generated by Stata and those generated
by R is shown in Figure A6. They are not as highly correlated because of the different ways in
which trimming is performed in R and Stata (see Table A1).

Figure A7 shows the command used to produce the raked weights for the full data set,
which can be divided into three subsamples based on method of recruitment. The rationale for
raking after collapsing the subsamples into a single sample is offered in Appendix B. For more
details on the raking procedure, see Vincent (2015).

Step 3: Generate the replicate raking weights using the bootstrap
We generate the replicate raking weights by calling ipfraking after bsweights

(Kolenikov 2010). Iterative proportional fitting is therefore performed on each bootstrapped
sample after all the samples have been generated.

As shown in Figure A8, we specify the strata and initial post-stratification weights before
running bsweights so that the resampling procedure mimics stratified random sampling, using
the same strata as the original survey design.

Figure A9 shows the bsweights command used to create 300 sets of replicate weights, with
the seed set to 2014. We choose to create 300 replicates based on Figure A10, which shows the
variance estimates of the mean of the variable cash on hand varying with respect to different
numbers of bootstrap replications. Twenty trials were conducted for each replication size from
50 to 1,000 in intervals of fifty, and box plots are produced of the resulting variance estimates.
The variance estimates are stable with respect to the number of replications, with the median
estimates all approximately 13. Moreover, Figure A11 shows that with 300 replications, the
average time to compute the variance is roughly 3 seconds.

Step 4: Declare the bootstrap survey environment in Stata
In the declaration of survey environment, we specify the bootstrap option (vce[bootstrap])

and the names of the replicate weights (bsrw[bsw final 1-bsw final 300]) so that variances will
be calculated using the replicate raking weights. We then estimate the total value of the cash

on hand variable and its variance under the bootstrap environment (see Figure A12).

30



Figure A1: Estimating total value of cash on hand with strata under design weights

r; t=0.05 14:02:45

. gen simplewgt = 26502410/3663

r; t=0.00 14:02:45

. svyset [pw=simplewgt], strata(strata)

pweight: simplewgt

VCE: linearized

Single unit: missing

Strata 1: strata

SU 1: <observations>

FPC 1: <zero>

r; t=0.02 14:02:45

. svy: total cashonhand_ed

(running total on estimation sample)

Survey: Total estimation

Number of strata = 84 Number of obs = 3651

Number of PSUs = 3651 Population size = 26415588

Design df = 3567

Linearized

Total Std. Err. [95% Conf. Interval]

cashonhand_ed 2.17e+09 9.83e+07 1.97e+09 2.36e+09

r; t=0.08 14:02:45

Note: The total of cash on hand is estimated with design weights (see Step 1). The number of respondents with

non-missing values for cash on hand is 3,651.
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Figure A2: Setting up a survey environment with post-stratification weights

r; t=0.06 14:02:46

. svyset [pw=simplewgt], strata(strata) poststrata(strata) postweight(Count)

pweight: simplewgt

VCE: linearized

Poststrata: strata

Postweight: Count

Single unit: missing

Strata 1: strata

SU 1: <observations>

FPC 1: <zero>

r; t=0.02 14:02:46

Note: The variable strata is the post-strata category and the variable Count contains the population size of each

post-stratum (see Step 1).
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Figure A3: Ratios of mean squared errors for cash on hand using trimmed raked weights
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Note: MSEs are calculated for the cash on hand variable taking the total computed with untrimmed weights to be

the true total (see Step 2). They are then divided by the MSE of the total estimate with untrimmed weights (which

equals the variance of the total estimate with untrimmed weights). The resulting ratios are plotted in Figure A3.
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Figure A4: Diagnostic graphs for ipfraking with no trimming and optimization tolerance 0.01
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Note: These graphs show the result of performing raking based on CIUS data (Step 2). Starting from the upper

left corner and moving clockwise, we have a histogram of the raked weights produced, a histogram of the ratio

between the raked weights and intial weights, a plot on a log scale showing the discrepancy with CIUS targets by

the number of iterations, and the same plot on an absolute scale. The scale on the x-axis of the histogram in the

upper left-hand corner has been standardized by the mean of the raked weights.
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Figure A5: Scatter plot of untrimmed raked weights with tolerance 0.01 and tolerance 0.001
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Note: Both sets of weights have been standardized by the mean of the untrimmed raked weights with

tolerance 0.01 (see Step 2).
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Figure A6: Scatter plot of trimmed raked weights generated from Stata and R
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Note: Both sets of weights have been standardized by the mean of the untrimmed raked weights generated from

Stata with tolerance 0.01 (see Step 2).
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Figure A7: The ipfraking command

r; t=0.06 17:09:32

. ipfraking [pw=$initwgt], generate(rakedwgt) ctotal($rakeva

> rs2) tolerance($tolerance) trace

(output omitted )
r; t=7.68 17:09:40

. summarize rakedwgt

Variable Obs Mean Std. Dev. Min Max

rakedwgt 3663 7659.569 11336.17 153.4302 231592.8

r; t=0.01 17:09:40

. global nmean = $trim * r(mean)

r; t=0.00 17:09:40

. ipfraking [pw=$initwgt], generate(rakedwgt_tr) ctotal($rakev

> ars2) tolerance($tolerance) trimhiabs($nmean) trimfrequency($trimfreq) nograph

(output omitted )
r; t=1.14 17:09:41

Note: The ipfraking command is used twice because we use it to generate the untrimmed weights first. We then

use five times the mean of the untrimmed weights as the upper bound for trimming the second time we use the

ipfraking command. This produces the trimmed weights (see Step 2).
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Figure A8: Specifying initial survey environment for bsweights

r; t=0.06 13:27:36

. svyset [pweight=$initwgt], strata(strata) psu(id)

pweight: basewgt

VCE: linearized

Single unit: missing

Strata 1: strata

SU 1: id

FPC 1: <zero>

r; t=0.00 13:27:36

Note:initwgt is a placeholder for the initial weight to be used for generating the bootstrap replicate weights

(see Step 3). In this case, it is the post-stratification weights.

38



Figure A9: The bsweights command

r; t=0.05 13:27:36

. set seed 2014

r; t=0.00 13:27:36

. bsweights bsw_, reps(300) n(-1) dots

Warning: the first-order balance was not achieved

(output omitted )
r; t=31.92 13:28:08

. forvalues i=1/300{

2. ipfraking [pw=bsw_`i´], generate(bsw_untr_`i´) nograph

> ctotal($rakevars) tolerance($tolerance)

3. summarize bsw_untr_`i´

4. global nmean = $trim * r(mean)

5. ipfraking [pw=bsw_`i´], generate(bsw_final_`i´) nograph

> ctotal($rakevars) tolerance($tolerance) trimhiabs($nmean) trimfrequency($trimfreq)

6. }

Note: We first produce bootstrap replicate weights using the post-stratification weights as the initial weights.

We then calibrate each of the 300 sets of bootstrap replicate weights using the same raking procedure used for

the complete sample (Step 3).
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Figure A10: Box plots of estimated variance for the mean of cash on hand
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Note: 20 variance estimates by the bootstrap resampling method (using different seeds) are generated for each

replication size from 50 to 1000 in intervals of fifty (see Step 3). Box plots of the 20 estimates are shown for

each replication size. Outliers are not shown in the box plots.

40



Figure A11: Number of bootstrap replications versus time to compute variance
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Note: 20 variance estimates by the bootstrap resampling method (using different seeds) are generated for each

replication size from 50 to 1000 in intervals of fifty (see Step 3). For each replication size, a box plots is shown

of the lengths of time taken for the 20 trials. Outliers are not shown in the box plots.
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Figure A12: Estimating total of cash on hand with replicate weights

r; t=0.05 14:02:46

. svyset [pw=rakedwgt_tr], vce(bootstrap) bsrw(bsw_final_1-bsw

> _final_300) dof(3570)

(output omitted )
r; t=0.02 14:02:46

. svy: total cashonhand_ed

(running total on estimation sample)

Bootstrap replications (300)

1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

.................................................. 250

.................................................. 300

Survey: Total estimation Number of obs = 3651

Population size = 26153773

Replications = 300

Design df = 3570

Observed Bootstrap Normal-based

Total Std. Err. [95% Conf. Interval]

cashonhand_ed 2.21e+09 7.95e+07 2.06e+09 2.37e+09

r; t=2.89 14:02:49

Note: The total of cash on hand is estimated using raked weights and the variance is estimated with the bootstrap

replicate weights (see Step 4). The number of respondents with non-missing values for cash on hand is 3,651.
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Table A1: Comparison of the raking commands in R and Stata

Rake command in R ipfraking command in Stata

Convergence criteria Based on the following
metric between suc-
cessive iterative weights:
maxj∈S |wk,pj /wk−1,pj − 1|,
where wk,pj is the jth unit
weight at the kth step. Con-
vergence is declared when
the metric falls below a
user-specified tolerance level
(Lumley 2012).

Similarly based on the iter-
ative weights but also allows
user to specify a tolerance
level for matching margins.
This tolerance level does not
affect convergence, but Stata
issues a warning message if it
is not satisfied.

Numerical solution Uses the Newton-Raphson
method with analytical deriv-
atives (Lumley 2012).

Uses the Newton-Raphson
method with numerical deriv-
atives.

The order of constraints Does not matter if process
converges.

Does not matter if process
converges.

Trimming Different options available:
trimming after each iteration
or trimming at end of raking
process. Does not redistribute
weights to untrimmed obser-
vations.

Trims at the end of the
raking process and redistrib-
utes trimmed weights to un-
trimmed observations.

Note: The Rake command is from the R package survey written by Thomas Lumley. The ipfraking command is

from the Stata package ipfraking by Stanislav Kolenikov.
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Appendix B Rationale for Collapsing Three Subsamples

The full 2013 MOP survey sample consists of three distinct subsamples: online (respond-
ents selected from an online panel of potential volunteers and invited by email)9, offline CFM
(recent participants of the Canadian Financial Monitor survey invited by regular mail), and
Non-CFM (respondents selected from an offline panel of potential volunteers and invited by
regular mail). In this section, we justify performing calibration on the full combined data set
instead of on the three subsamples separately.

Step 1: We compare both the missing patterns and the distributions of the completed SQ
questions for the online, offline CFM, and Non-CFM subsamples, and we find the following:

• For the 2013 MOP survey, the offline CFM and offline Non-CFM respondents have lower
item-response rates than the online respondents. However, among offline respondents,
CFM and Non-CFM respondents have similar missing data patterns.

• Regarding the distributions of answers to the survey questions, we find significant differ-
ences between the online and offline respondents. Nevertheless, there are few differences
between the offline CFM and offline Non-CFM. For the completed survey questions, we
conduct the two-sample omnibus test introduced by Epps and Singleton, which usually
has greater power and is suitable for both discrete and continuous valued data. How-
ever, the Epps-Singleton test may fail when data are heavily concentrated in a single
value (almost degenerating to a constant), in which case we conduct the Mann–Whitney
rank-sum (MW) test instead.

Action: Combine the offline CFM and Non-CFM to generate the paper-based frame
(to achieve a larger sample size and better MSE performance), while keeping the online
subsample as a separate frame.

Step 2: Perform the analysis suggested by Brick et al. (2006) and Young et al. (2012) to
compare the means and variances across different weighting schemes (see below).

• Based on the above discussion, we determine that we have a classical dual-frame sample.
In particular, we have a non-overlapping dual-frame sample because panelists can only
be invited once for the MOP survey, although they are allowed to be in both the paper-
based and online subsamples. Ipsos Reid sent invites to the paper-based frame first, then

9 Probability sampling ensures that every possible sample from the population has a known probability of be-
ing chosen (Lohr 2010). Because the online panel is not recruited using probability sampling, Bayesian credibility
intervals are usually calculated for estimates based on this panel (Roshwalb, El-Dash and Young 2012). However,
in this report, frequentist variance estimation is used to measure the sampling errors for the pseudo-population
(Quatember 2016) instead of for the true population.
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de-duplicated those who had been invited from the paper-based when sending the online
invites. The advantage of a non-overlapping dual-frame sample is that we have a simple
way to collapse different frames and do not need to adjust for the composite weights as
in an overlapping dual-frame sample (Callegaro et al. 2011).

• Option 1 Only use the design weights without the raking procedure: Obtain design
weights for the paper-based frame as WD

P and the online frame as WD
O , respectively.

Then merge the two frames with the weights
{
WD
P ,W

D
O

}
. According to Vincent (2015),

we will produce two sets of design weights, which can be fed into the raking procedure.

• Option 2 Merge and then rake: Rake the combined data set with the initial weights
{WD

P , WD
O }, and this will generate the raked weights {WR

P , WR
O }. A similar method

was implemented for two surveys: (1) Canadian Community Health Survey and (2) the
Survey Data on the Health of New Yorkers.

• Option 3 Rake separately for each frame, then merge: Rake each frame separately, with
the initial weights from Option 1. This will produce the raked weights {WR′

P } and {WR′
O }

for the paper-based and online frames. Lastly we merge {WR′
P } and {WR′

O } to generate
the merged weights {WR′

P ,W
R′
O }.

• Option 4 Merge and then rake with an extra Internet access control variable indicating
whether the panelist has access to the Internet at home. Rake the combined data set with
the initial weights {WD

P , WD
O } with an extra Internet access control variable, and this

will generate the raked weights {WRI
P , WRI

O }.

• Option 5 Only rake the paper-based frame, producing the raked weights {WR′′
P }.

Table B1 shows the means and variances of different weighting schemes with uniform
weights as the initial weights for raking, while Table B2 is constructed similarly except using
post-stratification weights for raking. In terms of weighted mean estimates, differences across
weighting schemes are less than five percent. The differences between the estimated means
are similar even with different initial weights. As for the variances associated with different
weighting schemes, the variance from Option 2 is the second smallest in Table B1 and the
smallest in Table B2, suggesting that using the raking in the last step is able to reduce the
variance dramatically (D’Arrigo and Skinner 2010).

Action: Choose Option 2, which first merges the two frames and then applies the raking as
for the calibration of a full data set.
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Table B1: Means and variances of cash on hand using uniform weights in raking

Option 1 (N/n) Option 2 Option 3 Option 4 Option 5

Mean 81.96 77.95 76.94 80.10 79.24

Variance 14.72 7.02 26.08 9.22 6.34

Note: Variance of Option 1 is calculated based on the linearization method, which is the default in Stata, while

variance estimates from Options 2 to 5 are computed based on the bootstrap resampling.

Table B2: Means and variances of cash on hand using post-stratification weights in raking

Option 1 (Nh/nh) Option 2 Option 3 Option 4 Option 5

Mean 81.91 78.27 76.91 79.94 82.25

Variance 16.76 7.13 56.27 9.33 11.78

Note: Variance of Option 1 is calculated based on the linearization method, which is the default in Stata, while

variance estimates from Options 2 to 5 are computed based on the bootstrap resampling.
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