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Abstract 

We offer a theory of contagion based on the information choice of investors after 
observing a financial crisis elsewhere. We study global coordination games of regime 
change in two regions with an unobserved common macro shock as the only link between 
regions. A crisis in the first region is a wake-up call to investors in the second region. It 
induces them to reassess the regional fundamental and acquire information about the 
macro shock. Contagion can occur even after investors learn that regions are unrelated 
(zero macro shock). Our results rationalize empirical evidence about contagious bank 
runs and currency crises after wake-up calls. We also discuss other testable implications 
of the model. 

JEL classification: D82, F3, G01, G21 
Bank classification: Exchange rates; Financial stability; International financial markets 

Résumé 

Nous présentons une théorie de la contagion fondée sur la décision des investisseurs 
d’acquérir ou non de l’information après avoir observé la survenue d’une crise financière 
dans un autre territoire. Nous étudions les jeux globaux de coordination autour d’un 
changement de régime dans deux régions qui ont pour seul lien un choc 
macroéconomique non observé. Une crise dans la première région envoie un signal 
d’alerte aux investisseurs de la seconde, qui sont alors poussés à réévaluer les facteurs 
fondamentaux de leur propre région et à acquérir de l’information sur le choc 
macroéconomique. Il peut y avoir contagion même si les investisseurs apprennent que les 
facteurs fondamentaux des deux régions ne sont pas reliés (absence de choc 
macroéconomique). Les résultats de notre étude expliquent les données empiriques sur la 
propagation des paniques bancaires et des crises de change après des signaux d’alerte. 
Nous abordons également d’autres implications vérifiables du modèle.  

Classification JEL : D82, F3, G01, G21 
Classification de la Banque : Taux de change; Stabilité financière; Marchés financiers 
internationaux 

 

 



1 Introduction

Understanding the causes of financial contagion is an important question in banking and interna-

tional finance. For example, Forbes (2012) distinguishes four mutually non-exclusive channels

of contagion: trade, banks, portfolio investors, and wake-up calls. According to the wake-up call

hypothesis—a popular explanation for contagion put forward by Goldstein (1998)—a financial cri-

sis in region 1 is a wake-up call to investors in region 2 that induces them to re-assess and inquire

about the fundamentals of region 2. Such a re-appraisal of risk can lead to a contagious spread of

a crisis to region 2. In this paper, we offer a theory of contagion based on a re-assessment of local

fundamentals and information acquisition after a wake-up call.

There is empirical support for wake-up call contagion both across markets and over time. Study-

ing equity markets during the global financial crisis of 2007–09, Bekaert et al. (2014) identify

wake-up calls as the key driver of contagion. Analyzing eurozone sovereign bond markets, Gior-

dano et al. (2013) find evidence for contagion based on the wake-up call of the Greek crisis of

2009–10. For bond markets during the Asian crisis in 1997, Basu (2002) finds evidence for con-

tagion based on the re-assessment of risks in some countries. Karas et al. (2013) find a wake-up

call effect during the Russian banking panic of 2004, where deposit flows remained sensitive to

bank capital, regardless of the introduction of deposit insurance. For the Panic of 1893, Ramirez

and Zandbergen (2013) document contagion based on the wake-up call of newspaper reports about

distant bank runs, which led to elevated deposit withdrawals in Montana. Despite this body of

empirical evidence, there has been little theoretical work on the wake-up call hypothesis.

We offer a wake-up call theory of contagion based on a re-assessment of local fundamentals

and information acquisition after observing a crisis elsewhere. We define contagion as an increase

in the probability of a crisis in region 2 after a crisis in region 1, relative to the case of no crisis

in region 1. Specifically, wake-up call contagion is the increase in the probability of a crisis in

region 2 after a crisis in region 1 that prevails even if investors learn after the crisis in region 1

that regional fundamentals are uncorrelated. In our model, the wake-up call contagion effect arises

from a differential information choice of investors who acquire information about the exposure

of region 2 to a common macro shock only after the wake-up call of a crisis in region 1. As

a result, observing no crisis is a more favorable event than if investors learn after observing a
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crisis that regional fundamentals are uncorrelated. Since tail events are never fully unexpected, the

unfavorable news of a crisis elsewhere induces investors to acquire information about the risk of

exposure (to a macro shock) that is otherwise considered unlikely.

While empirical work often measures the contribution of different contagion channels, our theo-

retical approach aims to isolate the wake-up call component in the transmission of financial crises.

Therefore, we abstract from both common investors and balance sheet links. Building on global

games (Carlsson and van Damme 1993), we study how information acquisition shapes the funda-

mental re-assessment and derive a set of testable implications consistent with empirical evidence.

We develop a global coordination game of regime change with incomplete information about

a fundamental (Morris and Shin 2003). In contrast to the standard game, our model has two

regions that move sequentially and whose only link is the exposure to an initially unobserved

common macro shock. A financial crisis occurs in a given region if sufficiently many investors act

against the regime (attack a currency peg, withdraw funds from a bank, or refuse to roll over debt).

Investors in region 1 decide whether to act, which determines the outcome in region 1. Afterwards,

investors in region 2 observe the endogenous public signal of whether a regime change occurred in

region 1 and update their beliefs about the macro shock. Subsequently, investors decide whether

to learn the macro shock at a cost and, thereafter, decide whether to act.

If crises are rare and the macro shock is negatively skewed, investors in region 2 have a higher

incentive to acquire information after the wake-up call of observing a crisis in region 1 (Proposition

2). Intuitively, the negative skewness creates an asymmetry that makes it more valuable to acquire

information after the rare event of observing a crisis. For an intermediate range of information

costs, investors learn the macro shock if and only if a crisis occurred in region 1 (Proposition 1).

This differential information choice is at the core of the fundamental re-assessment and shapes

contagion. It arises since investors face an elevated risk of a strongly negative macro shock after

a wake-up call, while the negative macro shock is less likely after no crisis. This updating result

arises because observing a crisis in region 1 can whip around probabilities of tail events and focus

investor attention on rarely observed downside risk. The value of information is higher after a

crisis in region 1, since investors in region 2 benefit more from understanding whether regional

fundamentals are linked. Specifically, an investor’s benefit of tailoring its attack rule to the realized
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macro shock is higher after a crisis in region 1 than after no crisis.

We show that contagion can occur even if all investors learn that the macro shock is zero and

regional fundamentals are unrelated (Proposition 3). That is, the probability of a crisis in region

2 after a crisis in region 1 and learning that region 2 has no exposure to region 1 is higher than

the probability of a crisis in region 2 after no crisis in region 1. This result consists of two parts:

endogenous information choice of investors and contagion. Endogenous information is critical for

the contagion result that, in turn, is driven by Bayesian updating about the macro shock. Observing

a crisis in region 1 and learning about a zero macro shock means that the crisis is unrelated to the

fundamental in region 2. In contrast, absent a crisis in region 1, investors in region 2 choose not

to acquire information and form a more optimistic belief about the macro shock. As a result, the

probability of a crisis in region 2 is lower after no crisis in region 1.

A key assumption for the result on the differential information choice of investors is the neg-

atively skewed distribution of the macro shock. There is an extensive empirical literature on the

negative skewness of important macroeconomic variables, including GDP growth, individual stock

returns, and the aggregate stock market. The literature on asymmetric business cycles studies the

occurrence of sharp recessions and slow booms (for example, Neftçi 1984).1 Barro (2006) links the

high equity premium to the occurrence of rare disasters. More recent empirical research highlights

the growth vulnerability dynamics, focusing on downside risks.2 The negative skewness also plays

a prominent role in the context of financial liberalization in developing countries. Rancière et al.

(2003) find that financially liberalized developing countries exhibit a negatively skewed growth of

both GDP and credit. Rancière et al. (2008) argue that a negative skewness captures systemic risk

and is therefore a systemic component.

The wake-up call theory of contagion can be informative for a range of economic applications. It

builds on negative macroeconomic outcomes adversely impacting financial conditions and is based

on Bayesian learning and information choice when the macro shock is negatively skewed. For cur-

rency crises, speculators observe a currency attack and are uncertain about the magnitude of trade

1When measured over long periods, the negative skewness of real per capita GDP growth can be substantial,
exceeding −5 for some countries (Barro 2006). Theoretical explanations for the negative skewness of output and
total factor productivity include Acemoglu and Scott (1997), Veldkamp (2005), and Jovanovic (2006). Campbell and
Hentschel (1992) and Bae et al. (2007) study the sources of the negative skewness of stock returns.

2For example, Adrian et al. (2019) study the evolution of the conditional distribution of future U.S. GDP growth
and find that a build-up of negative skewness is associated with worsening financial conditions.
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or financial links or institutional similarity.3 For rollover risk and bank runs, wholesale investors

observe a run elsewhere and are uncertain about interbank exposures.4 For sovereign debt crises,

bond holders observe a sovereign default elsewhere and are uncertain about the macroeconomic

links, the commitment of the international lender of last resort, or the resources of multilateral

bail-out funds.5 For political regime change, activists observe a revolution, for example during the

Arab spring, and are uncertain about the impact on their government’s ability to stay in power.6

The wake-up call theory of contagion is particularly relevant for currency and banking crises in

developing countries, where a crisis often spreads to several countries. Institutional characteristics

such as structural and policy distortions make individual countries prone to (potentially adverse)

changes in the (international) macroeconomic environment (Dasgupta et al. 2011, Corsetti et al.

1999), exposing them to downside risks. Our macro shock captures such factors in a stylized way.

We derive two testable implications for information acquisition. First, information acquisition

can amplify volatility measured as the increase in the dispersion of probabilities of a crisis in

region 2 conditional on the realized macro shock, which forms the basis of a contagious spread

of volatility. At the same time, the previously described differential information choice dampens

volatility because investors refrain from tailoring their attack strategies, making them less sensitive

when things are going well. Second, the extent of information acquisition about the exposure

to aggregate or market-wide shocks is higher after observing a financial crisis elsewhere. This

prediction is consistent with empirical evidence in Vlastakis and Markellos (2012). In a study on

the U.S. stock market, they document a positive association between the demand for information

on the market level, proxied by internet search intensity (Da et al. 2011) and may be interpreted as

information acquisition about the common component of stock returns, with measures of volatility.

Other theories of contagion have been proposed. Regarding balance sheet links, see Allen and

Gale (2000) and Dasgupta (2004) for interbank links and Kiyotaki and Moore (2002) for balance-

sheet contagion. For a common discount factor channel, see Ammer and Mei (1996) and Kodres

3See Morris and Shin (1998) and Corsetti et al. (2004) for a one-regional global game that builds on the earlier
works of Krugman (1979), Flood and Garber (1984), and Obstfeld (1986). For trade links, financial links, and institu-
tional similarities see Glick and Rose (1999), Van Rijckeghem and Weder (2001, 2003), and Dasgupta et al. (2011).

4See Rochet and Vives (2004) and Goldstein and Pauzner (2005) for one-region bank runs.
5See Corsetti et al. (2006). See Drazen (1999) for membership contagion.
6For a one-regional global game of political regime change with endogenous information manipulation or dissem-

ination, see Edmond (2013) and Shadmehr and Bernhardt (2015), respectively.
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and Pritsker (2002). Regarding a common investor base, see Goldstein and Pauzner (2004) and

Cole et al. (2016) for wealth effects, Pavlova and Rigobon (2008) for portfolio constraints, Taketa

(2004) and Oh (2013) for learning about other investors. In terms of ex-post exposures, see Basu

(1998) for a common risk factor, and Acharya and Yorulmazer (2008), Manz (2010) and Allen

et al. (2012) for asset commonality among banks and information contagion. To distinguish our

theory of contagion after wake-up calls more clearly from the literature, we nest a version of the

standard information contagion channel as a special case.7

Calvo and Mendoza (2000) and Mondria and Quintana-Domeque (2013) also have endogenous

information. Contagion arises in Calvo and Mendoza since globalization shifts the incentives of

risk-averse investors from costly information acquisition to imitation and herding. In Mondria and

Quintana-Domeque, the contagion mechanism is based on the reallocation of limited attention by

risk-averse investors, where a higher relative attention allocated to one market induces a higher

price volatility in another market. In contrast, we highlight a complementary channel where a

wake-up call induces information acquisition about a macro shock and contagion without common

investors, risk-aversion, or information processing constraints. Alternative modeling approaches

include behavioral aspects (e.g. Caplin and Leahy (1994)), or the rational inattention literature.

Our modeling approach is closest to the literature on information choice in global coordina-

tion games initiated by Hellwig and Veldkamp (2009). They show that the information choices of

investors inherit the strategic motive of an underlying beauty contest, which can result in multi-

ple equilibria. Our game of regime change with complementarity in actions also yields strategic

complementarity in information choices. While multiple equilibria exist, a sufficiently negatively

skewed macro shock ensures a uniqueness for an intermediate range of information costs. In con-

trast to the acquisition of publicly available information, Szkup and Trevino (2015) examine private

information acquisition in global games of regime change.

Our theory is also related to the literature on financial crises that rationalizes how small shocks

have large effects. Dang et al. (2015) and Gorton and Ordoñez (2014, 2019) study how information-

insensitive debt can become information-sensitive if fundamentals deteriorate, triggering adverse

selection concerns and information acquisition about the collateral backing the loans. As in our pa-

7See Chen (1999) for a model with information contagion and uninformed junior claimants, Li and Ma (2016) for
or a model on uninformed asset buyers and Chen and Suen (2013) for information contagion with model uncertainty.
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per, information acquisition follows negative news but our channel differs as we analyze a Bayesian

learning channel about macro fundamentals. Instead of a fear of adverse selection, there is a fear

of macro downside risk with the skewed macro shock driving the differential information choice.

We proceed as follows. Section 2 describes the model. We solve for its equilibrium and describe

our contagion results in section 3. Section 4 discusses testable implications. Section 5 discusses

extensions and robustness issues. Section 6 concludes. All proofs are in the Online Appendix.

2 Model

We study global coordination games of regime change played sequentially in two regions t = 1,2.

Each region has a different unit continuum of risk-neutral investors i ∈ [0,1]. Investors in region

t = 1 move first, followed by investors in region t = 2.

Attack decision. In each region, investors simultaneously decide whether to attack the regime,

ait = 1, or not, ait = 0. The outcome of the attack depends on the aggregate attack size, At ≡∫ 1
0 ait di, and a regional fundamental Θt ∈ R that measures the strength of the regime. A regime

change occurs if enough investors attack, At > Θt . Following Vives (2005), an attacking investor

in region t receives a benefit bt > 0 if a regime change occurs and otherwise incurs a loss `t > 0,

where γt ≡ `t
bt+`t

∈ (0,1) is the relative cost of failure:

u(ait = 1,At ,Θt) = bt 1{At>Θt}− `t 1{At≤Θt}. (1)

The payoff from not attacking is normalized to zero, so the relative payoff from attacking increases

in the attack size At (global strategic complementarity in attack decisions) and decreases in Θt .

A regime change is a currency attack, bank run, or debt crisis. The fundamental is interpreted

as the ability of a monetary authority to defend its currency (Morris and Shin 1998; Corsetti et al.

2004), the measure of investment profitability (Rochet and Vives 2004; Goldstein and Pauzner

2005; Corsetti et al. 2006), or the resources or willingness of a debtor to repay. Investors are

interpreted as currency speculators, as retail or wholesale bank creditors who withdraw funds, or

as debt holders who refuse to roll over.

Macro shock. Each regional fundamental Θt comprises a regional component θt and a common
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component m. This common macro shock is the only link between regions:

Θt = θt +m, (2)

where each θt follows an independent normal distribution with mean µ ∈ (−∞,∞) and precision

αt ∈ (0,∞) that is independent of the macro shock. Unless stated otherwise, we consider α1 =α2≡

α . Depending on its realization, the macro shock induces a positive correlation between regional

fundamentals Θ1 and Θ2. Specifically, region 2 is exposed to region 1 if m 6= 0. The macro shock

is assumed to take one of three values:

m =


∆ p

−s∆ w.p. q

0 1− p−q,

(3)

where p∈ [0,1], q∈ [0,1− p], ∆ > 0, s > 0. We impose p = qs to ensure an unbiased macro shock.

Its variance is p(1+ s)∆2 and its skewness is 1−s√
p(1+s)

, which is negative if and only if s > 1.8

The macro shock is initially unobserved, motivated by our applications to financial crises. For

currency attacks or sovereign debt crises, this uncertainty about the macro shock reflects the un-

known relevance of certain institutional similarities or of real or financial linkages across debtors.

For bank runs, it reflects the uncertainty about bank portfolios and interbank exposures.

Incomplete information. Following Carlsson and van Damme (1993), there is incomplete

information about the fundamental. Each investor receives a noisy private signal xit before deciding

whether to attack (Morris and Shin 2003):

xit ≡Θt + εit . (4)

Idiosyncratic noise εit is identically and independently normally distributed across investors with

zero mean and precision β ∈ (0,∞). Each noise term is independent of the macro shock and the

regional component.
8The parameter s also affects the variance of the macro shock but the effect on the skewness is key. In the robustness

section 5.4, we argue that the negative skewness governed by s is at the heart of our result and study modifications to
our model, including changes to ∆ such that s only affects the skewness of the macro shock.
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Information acquisition. An information stage precedes the coordination stage in region 2,

as summarized in the timeline in Table 1. First, investors in region 2 observe whether there is a

crisis in region 1. Second, investors in region 2 can acquire costly information about the macro

shock.9 Investors simultaneously decide whether to purchase a perfectly revealing signal about

the macro shock at cost c > 0.10 In terms of wholesale investors or currency speculators, costly

information acquisition could be the hiring of analysts who assess publicly available information

to gauge the relevance of institutional characteristics such as structural or policy distortions that

are shared across regions and make them prone to changes in the macroeconomic environment.

Date 1 Date 2

1. Macro shock m and regional component θ1 1. Regional component θ2 realized but unobserved
realized but unobserved

Information stage in region 2
Coordination stage in region 1

2. Investors choose whether to acquire information
2. Investors receive private information xi1 and about macro shock m at cost c > 0
choose whether to attack the regime, ai1 ∈ {0,1}

Coordination stage in region 2
3. Payoffs to investors in region 1

3. Investors receive private information xi2 and
4. Outcome of regime publicly observed choose whether to attack the regime, ai2 ∈ {0,1}

4. Payoffs to investors in region 2

Table 1: Timeline of events.

3 Equilibrium

3.1 Region 1

We first consider the equilibrium in region 1. A Bayesian equilibrium is an attack decision ai1

for each investor i and an aggregate attack size A1 that satisfy both individual optimality for all

investors, a∗i1 = argmaxai1∈{0,1}E[u(ai1,A1,Θ1)|xi1], and aggregation, A∗1 =
∫ 1

0 a∗i1di. Let n1 ∈ [0,1]
9We abstract from information acquisition in region 1 without loss of generality (see also section 5.5).

10We discuss an extension to noisy signals about the macro shock in section 5.5.
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be the proportion of investors in region 1 informed about the macro shock. If all investors are

informed, n1 = 1, the analysis is standard (see, e.g., Morris and Shin (2003), Morris and Shin

(2004)). If some investors are uninformed, n1 < 1, the analysis is non-standard and requires the

use of mixture distributions. We focus on the case of uninformed investors, n1 = 0, but the result

can be readily extended to the general case, 0 < n1 < 1, following the same steps as in the analysis

of the coordination stage in region 2.

Lemma 1 Equilibrium in region 1. Let n1 = 0. If private information is sufficiently precise, there

exists a unique monotone Bayesian equilibrium. Each investor attacks when the private signal is

below a signal threshold, xi1 < x∗1. A crisis occurs when the fundamental is below a fundamental

threshold, Θ1 < Θ∗1.

Proof See Appendix A.1.

Lemma 1 extends the analysis in standard global games models (e.g. Morris and Shin 2003) to

the case where the posterior of investors follows a mixture distribution over different macro states,

comprising conditional normal distributions. The equilibrium is characterized by an indifference

condition from individual optimality and by a critical mass condition which states that the propor-

tion of attacking investors A∗1 equals the fundamental threshold Θ∗1. The equilibrium conditions

can be reduced to one equation in one unknown. Using the results of Milgrom (1981) and Vives

(2005), the best-response function of individual investors are strictly increasing in the thresholds

used by other investors (Appendix A.1.1). The common requirement of sufficiently precise private

information suffices for uniqueness in monotone equilibrium in the case of mixture distributions.

3.2 Region 2

Considering region 2, let n2 ∈ [0,1] be the proportion of investors in region 2 who acquire infor-

mation about the macro shock m and di ∈ {I,U} is the information choice of investor i, with corre-

sponding attack rules of informed and uninformed investors, aI ≡ ai2(di = I) and aU ≡ ai2(di =U).

Definition 1 A pure-strategy monotone perfect Bayesian equilibrium in region 2 comprises an in-

formation choice for each investor, d∗i ∈ {I,U}, an aggregate proportion of informed investors,
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n∗2 ∈ [0,1], an attack rule for informed and uninformed investors, a∗I (m, ·) and a∗U(·), and an ag-

gregate attack size, A∗2, such that:

1. At the information stage, investors optimally choose their information di.

2. The proportion of informed investors is consistent with individual choices, n∗2 =
∫ 1

0 d∗i di.

3. At the coordination stage, attack rules are optimal, where uninformed investors use a∗U(·)

and informed investors use a∗I (m, ·) for each macro shock.

4. The aggregate attack size is consistent with attack rules for each macro shock:

A∗2 = n∗2

∫ 1

0
a∗I (m, ·)di+(1−n∗2)

∫ 1

0
a∗U(·)di. (5)

To derive analytical results, we maintain the following assumption throughout.

Assumption 1 Private information is precise, β > β , public information is imprecise, α < α , a

zero macro shock is unlikely, 1− p−q < η , crisis are rare, µ > µ , the macro shock is sufficiently

negatively skewed, s > s.

Assumption 1 states sufficient conditions for the main result on wake-up call contagion, where

the bounds are described in the proofs. The rareness of crises implies a strong fundamental re-

assessment after the wake-up call of a crisis in region 1 and the negative skewness is crucial for the

incentives of investors to acquire information only after observing a crisis but not for the Bayesian

updating channel. The assumption of a sufficiently high relative precision of private information

is common in the global games literature (e.g. Vives 2005). While sufficiently imprecise public

information is not required for the existence of unique attack rules, it leads to concentrated posterior

beliefs about the macro shock and facilitates the analysis of how equilibrium fundamental and

signal thresholds vary with the proportion of informed investors. The sufficiently low probability

of a zero macro shock simplifies the analysis. It allows us to focus on the favorable and unfavorable

macro states central to the re-assessment. These conditions are sufficient, but not necessary, and

help with tractability and exposition. The numerical examples below show that our results also

obtain under less restrictive conditions. We further discuss the robustness in section 5.
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We proceed by constructing the equilibrium in region 2. Investors in region 2 observe whether a

crisis occurred in region 1, and use Bayes’ rule to re-assess the fundamental of region 2, specifically

the macro shock m. Since only a proportion of investors may choose to acquire information,

we allow for heterogeneous priors. There are three distinct fundamental thresholds – one for

each realized macro shock – and thus three critical mass conditions. Similarly, there are four

indifference conditions – one for uninformed investors and one for informed investors for each

macro shock realization. The system of equations is derived in Appendix A.2. If some investors

are informed, we denote the fundamental thresholds in region 2 as Θ∗I (m). If all investors are

uninformed, n2 = 0, we denote the fundamental thresholds in region 2 as Θ∗U .

Proposition 1 Equilibrium in region 2. For intermediate information costs, c ∈ (c,c), there ex-

ists a unique monotone perfect Bayesian equilibrium. At the information stage, investors acquire

information only after a wake-up call, n∗2 = 1{Θ1<Θ∗1}. At the coordination stage, investors use

threshold strategies:

1. After no crisis in region 1, investors choose to be uninformed and attack whenever their

private signal is sufficiently low, xi2 < x∗U , and a crisis occurs whenever the fundamental is

sufficiently low, Θ2 < Θ∗U .

2. After a crisis in region 1, investors choose to be informed and attack whenever their private

signal is sufficiently low relative to a macro-shock-specific threshold xi2 < x∗I (m), and a

crisis occurs whenever the fundamental is sufficiently low relative to a macro-shock-specific

threshold, Θ2 < Θ∗I (m).

Proof See Appendix A.2.5 for a proof and Appendix A.2 for a derivation of the equilibrium con-

ditions, as well as the required results on information acquisition discussed below.

The equilibrium is in dominant actions at the information stage. Irrespective of the information

choices of other investors, each investor acquires information only after the wake-up call of a crisis

in region 1. This occurs whenever the fundamental in region 1 is below its threshold, Θ1 < Θ∗1.

When investors in region 2 choose to be uninformed, they use the same attack threshold, x∗U , and

there is one fundamental threshold, Θ∗U , where both thresholds are independent of the macro shock.

In contrast, when investors choose to be informed, they tailor their attack rule to the macro state,

x∗I (m), and there is one fundamental threshold for each state, Θ∗I (m).
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We next build intuition for the differential information choice in Proposition 1. Examining the

value of information, we trace out how investors’ incentives to acquire information about the macro

shock are affected by the wake-up call and other investors’ information choices. Let f ∈ {0,1}

indicate whether a crisis occurred in region 1. After a wake-up call, f = 1, investors learn that

the fundamental in region 1 was low, Θ1 < Θ∗1. Conversely for f = 0, the fundamental was high,

Θ1≥Θ∗1. Using Bayesian updating, Lemma 2 in Appendix A.2.1 states that a less (more) favorable

macro shock realization is more likely after a crisis (no crisis).

The resulting re-assessment determines the incentives of investors to acquire information, with

a higher value of information after a wake-up call. Since crises are rare events, there is a strong

Bayesian updating channel after a wake-up call. The negatively skewed macro shock generates an

asymmetry, which assures that it is more valuable to acquire information about the realized macro

shock after observing a crisis in region 1. The probability of a negative macro shock is small

without a crisis in region 1, but it is substantially higher after a crisis. Hence, investors in region 2

have a high benefit from learning about the macro shock and tailoring their attack decision. This

is the key effect behind the differential information choice in Proposition 1.

We proceed by discussing the value of information and how it affects the information acquisition

incentives. The value of information is defined as the difference between the expected utility of

an informed investor, EUI , and an uninformed investor, EUU , as derived in Appendix A.2.3. It

depends on the proportion of informed investors and on whether a crisis occurred in region 1:

v(n2, f )≡ EUI−EUU . (6)

Informed investors observe whether a crisis occurred and take into account the possible realizations

of m, since these affect the signal thresholds, x∗I (m). By contrast, uninformed investors cannot tailor

their attack strategy and must use the same signal thresholds x∗U for all realized macro shocks. As

a result, the signal thresholds of informed and uninformed investors differ and v(n2, f )> 0.11

Information about the macro shock allows an investor to tailor her behavior and reduce two types

11To evaluate the incentives of investors to acquire information, we study the optimal attack behavior for any given
proportion of informed investors and allow for some investors to be informed while others are uninformed, resulting
in heterogeneous priors about the macro shock that follow a mixture distribution. In another global game with mixture
distributions, Chen et al. (2012) develop a theory of rumors during political regime change. However, they abstract
from both contagion and information choice.
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of errors. First, when an investor attacks the regime although no crisis occurs, she incurs a loss

(type-I error). Second, when an investor does not attack although a crisis occurs, she could have

earned a benefit (type-II error). The value of information is governed by the relationship between

these two types of errors. The marginal benefit of increasing x∗I (−s∆) above x∗U is positive because

the type-II error is relatively more costly than the type-I error. By contrast, the marginal benefit

of decreasing x∗I (∆) below x∗U is positive because the type-I error is more costly. In sum, informed

investors attack more aggressively upon learning the low macro shock realization, m = −s∆, and

less aggressively upon learning the high realization, m = ∆.

Next, we turn to the strategic aspect of information acquisition. The signal thresholds of in-

formed and uninformed investors depend on the proportion of informed investors. We find that

the difference in signal thresholds increases monotonically in the proportion of informed investors,

as derived in Lemma 3 in Appendix A.2.2. The divergence of signal thresholds with an increas-

ing proportion of informed investors induces a strategic complementarity in information choice,
dv(n2, f )

dn2
≥ 0, as derived in Lemma 4 in Appendix A.2.3. Intuitively, the individual attack decision

of an informed investor is more strongly adjusted the larger the proportion of informed investors,

which in turn increases the value of information. In the words of Hellwig and Veldkamp (2009),

investors want to know what others know in order to do what others do.

Figure 1 shows the attack threshold of informed and uninformed investors. First, informed in-

vestors attack more (less) aggressively after observing a negative (positive) macro shock. Second,

conditional on observing a wake-up call, both types of investors attack more aggressively. Com-

paring the left and right panel, all signal thresholds are higher after a wake-up call for each macro

state and for all n2 ∈ [0,1). When all investors are informed, n2 = 1, the signal thresholds coincide

irrespective of whether a crisis occurred in region 1, since region 1’s outcome does not contain any

information beyond the macro shock.

The relationship between the signal thresholds of informed investors is derived in Lemma 3

in Appendix 2.2.2. Strict divergence of x∗I (n2,−s∆) and x∗I (n2,∆) in the proportion of informed

investors follows from dΘ∗2(n2,−s∆)
dn2

> 0 and dΘ∗2(n2,∆)
dn2

< 0. Lemma 3 shows that the signal thresholds

are monotonic in the proportion of informed investors. Moreover, x∗I (n2,0) and x∗U(n2,m) are

bounded by x∗I (1,−s∆) and x∗I (1,∆). Solving the equilibrium condition in equation (26) when

14
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Figure 1: Signal thresholds of informed and uninformed investors, x∗I and x∗U , as a function of the
proportion of informed investors, n2, after no crisis (left panel) and a crisis (right panel), proven in
Lemma 3. Parameter values are α = β = 1, µ = ∆ = γ1,2 = p = 1/2 and s = 3.

all investors are uninformed, we find that [Θ∗U | f = 1]> [Θ∗U | f = 0] and, hence, [x∗I (0,m)| f = 1]>

[x∗I (0,m)| f = 0] for all m∈ (−s∆,0,∆). The right panel of Figure 1 shows an upward shift in signal

thresholds for all n2 < 1, which stems from the updating of uninformed investors’ belief about the

macro shock (Lemma 2). This shift is stronger when more investors are uninformed, but the

difference in thresholds is already noticeable for n2 = 0: [x∗U(0,m)| f = 1]> 1
2 > [x∗U(0,m)| f = 0].

Proposition 2 Wake-up call and the value of information. The value of information is higher

after a crisis in region 1 independent of the proportion of informed investors:

v(1,1)> v(0,1)> v(1,0)> v(0,0). (7)

Proof See Appendix A.2.4.

Proposition 2 ranks the value of information that affects the information choices of investors.

The first and third inequality in (7) represent the strategic complementarity in information choices

derived in Lemma 4 in Appendix A.2.3. The second inequality is due to the negatively skewed

macro shock. For a sufficiently negatively skewed macro shock and rare crisis, as guaranteed

by Assumption 1, we have v(0,1) > v(1,0). As a result, there exists an intermediate range of

information costs c∈ (c,c) with c≡ v(1,0) and c≡ v(0,1) such that all investors choose to acquire

information if and only if a crisis occurs in region 1 (the wake-up call).

Figure 2 shows that the value of information increases in the proportion of informed investors
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Figure 2: The value of information v and the proportion of informed investors n2 with and without
a wake-up call, f ∈ {1,0}. Parameters are as in Figure 1 and the left panel depicts different values
of µ , while the right panel shows the effect of a higher level of s that increases the skewness of
the macro shock (for µ = 3/4). In both cases the intermediate range of information costs expands.
Formal statements can be found in Proposition 2 and Lemma 4.

(strategic complementarity) and in the occurrence of a crisis in region 1 (Proposition 2 and Lemma

4). When crises are rare and the macro shock is sufficiently negatively skewed, the Bayesian up-

dating channel is strong and ensures a unique equilibrium for intermediate values of information

costs despite strategic complementarity in information choices. While we established the exis-

tence of the intermediate region analytically, comparative statics are difficult to obtain in general.

The left panel shows the existence of an intermediate region where v(0,1) > v(1,0) for µ = 1/2,

which implies a relatively high crisis incidence (see also Figure 4). There is a tendency for the

intermediate region to expand if crisis are less frequent (left panel for higher µ) and if s increases

(right panel). This resonates with Proposition 2 since the former strengthens the Bayesian up-

dating channel (Figure 3) and the latter increases the benefits from tailoring of signal thresholds,
d(x∗I (1,−s∆)−x∗I (1,∆))

ds > 0.12

We proceed by describing the contagion mechanism and build intuition for the Bayesian updat-

ing channel after the occurrence of a crisis in region 1.

3.3 Contagion

Having established a unique equilibrium for intermediate information costs, we turn to the question

of contagion after a wake-up call. Contagion is defined as the increase in the likelihood of a crisis

in region 2 after a crisis in region 1, compared to no crisis in region 1.

12In the Online Appendix A.7, we analytically show for a special case that the differential value of information
increases in the parameter s, governing the negative skewness of the macro shock, d[v(1,1)−v(1,0)]

ds > 0.
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Our main result is that contagion occurs even if investors learn that region 2 is not exposed to

region 1 (zero macro shock). This result isolates the wake-up call component of contagion. It

builds on the equilibrium information choices in Proposition 1 and holds under Assumption 1.

Proposition 3 Wake-up call contagion. Let c ∈ (c,c). A financial crisis in region 2 is more likely

after a crisis in region 1 when all investors acquire information and learn that the macro shock is

zero, than after no crisis in region 1, when all investors choose not to acquire information:

Pr{Θ2 < Θ
∗
I (m)|m = 0}> Pr{Θ2 < Θ

∗
U}. (8)

Proof See Appendix A.3.

This contagion result rests on the unique equilibrium for intermediate information costs. The

left-hand side of inequality (8) is the probability of a crisis in region 2 after a crisis in region 1,

a wake-up call, that induces investors to acquire information and when they learn that the macro

shock is zero. The right-hand side is the probability of a crisis in region 2 after no crisis in region

1, that induces investors not to acquire information. Hence, the conditional probability implicit in

the right-hand side allows for any realization of the unobserved macro shock.

We find that a crisis in region 2 is more likely after a crisis in region 1 than after no crisis in

region 1 even if all investors acquire information and learn that the macro shock is zero. Learning

that the macro shock is zero implies that the crisis in region 1 is unrelated to region 2. In contrast,

no crisis in region 1 implies a more favorable view about the fundamental in region 2 due to the

unobserved macro shock. Hence, the decreased crisis probability after observing no crisis in region

1 is a key driver of the result. This effect tends to lower the right-hand side of inequality (8).

While Bayesian updating is fairly mechanical, the result of wake-up call contagion arises en-

dogenously. For intermediate information costs, investors choose to acquire information only af-

ter the wake-up call. In other words, the comparison of scenarios in equation (8) hinges on the

differential information choice. Critically, our mechanism of wake-up call contagion based on

endogenous information is distinct from the information contagion literature with ex-post corre-

lated fundamentals (see section 5). It allows for contagion even when the fundamentals of the two

regions are uncorrelated ex-post, but potentially correlated ex-ante.
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Figure 3: The two panels illustrate the updating of the belief about the mean of the macro shock for
different strengths of regional fundamentals µ (left panel) and for different values of the parameter
s, which governs the skewness (right panel). The parameter values are as in Figure 1.

The Bayesian updating channel is about the re-assessment of the macro shock. Intuitively, the

observation of a crisis in region 1 can whip around probabilities of tail events and focus attention

on rarely observed downside risk. The left panel of Figure 3 shows the re-assessment for different

values of the average strength of regional fundamentals, µ . The dotted line reflects the prior

about the macro shock, which has zero mean, E[m] = 0. After observing a crisis in region 1,

the conditional expectation about the macro shock is negative, E[m| f = 1] < 0 (dark solid line).

This result is due to an upward revision of the probability of a negative macro shock after bad

news, Pr{m =−s∆| f = 1}> q. After observing no crisis in region 1, by contrast, the expectation

about the macro shock is positive (grey solid line), since the probability of a negative macro shock

is revised down. The re-assessment is stronger—that is the difference between E[m| f = 1] and

E[m| f = 0] is higher—when the average strength of regional fundamentals is higher and crises are

rare. The right panel shows the re-assessment of the mean of the macro shock for different values

of skewness, which is governed by s. The main insights are unaltered and an increase in s increases

the magnitude of the re-assessment for the same reasons. However, this panel also shows that the

Bayesian updating results arise even if s = 1 (no skewness).13

We wish to highlight that our contagion results do not hinge upon a common investor base or

balance sheet links across regions. Therefore, Proposition 3 isolates the wake-up call component

of contagion by showing that contagion occurs even if investors learn that the macro shock is

zero. The assumption of a negatively skewed macro shock is inessential for the Bayesian updating

13In the Online Appendix A.8, we analytically describe the Bayesian updating channel under the conditions of
Assumption 1, which is driven by dE[m| f=1]

dµ
< 0 and d(E[m| f=0]−E[m| f=1])

ds > 0.
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channel that governs inequality (8). However, it is crucial for the information choice underlying

the comparison in inequality (8), which is driven by the strong fundamental reassessment. Hence,

the wake-up call effect and the associated testable implications hinge on downside risk in the form

of rare but strongly negative shocks to fundamentals.

Figure 4 illustrates the magnitude of the wake-up call contagion effect. We compare the crisis

probability by plotting both sides of inequality (8). In the numerical example, the wake-up call

contagion effect is significant and its magnitude can exceed 15%. The bounds on the precision

of private and public signals are not more stringent than the standard conditions used to assure

uniqueness of equilibria in global games models (Morris and Shin 2003; Svensson 2006). Notably,

the result of wake-up call contagion prevails when the probability of a zero macro shock is rather

high (such as 1− p−q= 1/3) and when crises are relatively frequent (such as µ = 1/2), illustrating

the robustness of the key results from relaxing the sufficient conditions stated in Assumption 1.
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Figure 4: The magnitude of the wake-up call contagion effect in isolation, measured as the differ-
ence between the two sides of inequality (8) in Proposition 3. The left panel shows the increase in
wake-up call contagion under the baseline if p increases from 0.4 to 0.6 and ∆ = 0.4. The right
panel shows the increase in wake-up call contagion if ∆ increases from 0.4 to 0.6 and p = 0.6. The
other parameter values are as in Figure 1.

The magnitude of wake-up call contagion is governed by the strength of the Bayesian updat-

ing channel. Absent a crisis in region 1, uninformed investors place a positive probability Pr{m =

∆| f = 0}> p on a positive realization of the macro shock. Given that an increase in p is associated

with a more favorable view about fundamentals after not observing a crisis in region 1, the differ-

ence in likelihoods of a crisis in region 2, Pr{Θ2 < Θ∗I (m)|m = 0, f = 1}−Pr{Θ2 < Θ∗U | f = 0},

is positive and increasing in p (left panel). The magnitude of the wake-up call effect also increases
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in ∆ (right panel), the level of the positive macro shock. Intuitively, a higher ∆ is also associated

with a more favorable view about fundamentals after not observing a crisis.14

This contagion result is further strengthened when regions are indeed related ex-post, that is

when the macro shock takes a negative value.

Corollary 1 Negative macro shock. The result of Proposition 3 is strengthened if all investors

choose to acquire information after a crisis in region 1 and learn that the macro shock is negative:

Pr{Θ2 < Θ
∗
I (m)|m =−s∆}> Pr{Θ2 < Θ

∗
I (m)|m = 0}. (9)

Proof The proof parallels that of Proposition 3 and is therefore omitted.

The left-hand (right-hand) side of inequality (9) is the probability of a crisis in region 2 after

a crisis in region 1, a wake-up call, that induces investors to acquire information and when they

learn that the macro shock is negative (zero). On the left-hand side, beliefs are less favorable and

the crisis is more likely.

4 Testable Implications

Our theory of contagion after a wake-up call has two sets of testable implications described in this

section. We discuss how these implications have been tested or can be tested in future work.

Since the wake-up call contagion result relies on endogenous information acquisition, we first

describe predictions related to information acquisition.

Prediction 1: The extent of information acquisition about the exposure to aggregate or market-

wide shocks is positively associated with an increase in volatility, which forms the basis of a

contagious spread of volatility after a wake-up call.

14Analyzing the comparative statics for the magnitude of the wake-up call contagion effect is challenging and we
do it for a special case in the Online Appendix A.9. Since s > 1 is critical for the differential information choice—but
not for the Bayesian updating channel—the analysis can be simplified by considering the case s = 1. Using equation
(21) and the result from Lemma 2 we can show analytically that Pr{Θ2 < Θ∗I |m = 0, f = 1} > Pr{Θ2 < Θ∗U | f = 0},
∀p,∆ and that the difference in likelihoods of a crisis is increasing in p (under the sufficient condition that α1 is small)
and increasing in ∆.
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The first prediction is on financial fragility and highlights how information acquisition can am-

plify volatility, when measured as the increase in the dispersion of probabilities of a crisis in region

2 conditional on the macro shock realization (as may be observed by the empiricist). To see this, re-

call that, the occurrence of information acquisition about the exposure to aggregate or market-wide

shocks hinges on observing the wake-up call of a crisis elsewhere and on the cost of information.

Moreover, the acquisition of information about the macro shock induces investors to tailor their

attack strategy to the observed macro shock. Hence, the total contagion effect after a wake-up

call is stronger when investors learn that the macro shock realization is negative, m = −s∆ (see

also Corollary 1). Conversely, the total contagion effect after a wake-up call is weaker when in-

vestors learn that the macro shock realization is positive, m = ∆. In sum, the dispersion in the crisis

probabilities conditional on the macro state increases as a result of the information acquisition af-

ter observing the wake-up call of a crisis elsewhere. That is, a crisis elsewhere amplifies volatility

through endogenous information acquisition. Moreover, the dispersion of the probabilities of a cri-

sis in region 2 conditional on the macro shock realization is stronger if the aggregate component of

the fundamental exhibits a more severe downside risk because d(x∗I (1,−s∆)−x∗I (1,m))
ds > 0, ∀m∈{0,∆}.

Taken together, the wake-up call mechanism can contribute to explaining the spread of volatility

in episodes of emerging market turmoil by offering a complementary contagion channel.

The second prediction focuses on the differential incentives to acquire information.

Prediction 2: The extent of information acquisition about the exposure to aggregate or market-

wide shocks is higher after observing a financial crisis elsewhere than after observing no crisis.

The second prediction stems from equation (7) in Proposition 2 and is consistent with empirical

evidence. In a study on the U.S. stock market, Vlastakis and Markellos (2012) find evidence for a

positive association between the demand for market information, proxied by internet search inten-

sity (Da et al. 2011), with measures of volatility. The demand for information at the market level

may be interpreted as information acquisition about the common component of stock returns. In the

context of our model, the market information refers to information about the aggregate component

m and measures of volatility can be associated with a crisis occurring in region 1. Furthermore,

Vlastakis and Markellos document that the demand for market information (information about m)

is important relative to the demand for idiosyncratic information (information about θ2). For id-
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iosyncratic information, they find only mixed results in direction and strength. Taken together, the

empirical results support our focus on information acquisition about a macro shock.

Macroeconomic news are known to play an important role in asset markets (e.g. Andersen et al.

(2007)). Macro factors, or global factors in the case of sovereign debt (Longstaff et al. 2011), can

explain the majority of credit risk. This suggests that information acquisition about aggregate, or

market-wide, shocks plays an important role also in bond markets. Regarding sovereign debt, our

theory predicts a larger extend of information acquisition about common macro risks after another

country with similar characteristics enters a period of financial distress. Provided the availability

of proxies for information acquisition like the internet search intensity for macro news that relate

to potential common risk factors, this prediction may be tested.

The second prediction may also be testable in the corporate debt market. Consider a firm with

publicly traded debt to be rolled over by investors. A crisis elsewhere refers to a spike in the credit

risk of other firms in the same industry sector that may be associated with a substantial ratings

downgrade or earnings warning. It is well know that institutional lenders like banks seek to insure

against industry-specific risks when confronted with a significant exposure via portfolio trading or

the loan book. Our theory predicts a high sensitivity of debt holders to negative news that may

convey information about changes in industry-specific factors (e.g. demand factors, new trends

or innovations), as well as an increase in the incentive to acquire and analyze information about

potential industry shocks and vulnerabilities of firms with certain attributes and business models.

Our theory suggests that information acquisition occurs for an intermediate information cost.

An empiricist can separate industries according to whether information acquisition is cheap or

expensive. There are several potential proxies an empiricist may use for the information cost. Some

industry sectors comprise mostly smaller firms that are not publicly listed, which makes it more

difficult and costly for analysts to gauge relevant changes in industry-specific factors. Similarly,

the growth prospects of high-tech industry sectors are more difficult to analyze than, for instance,

utilities. Moreover, less homogeneous industry sectors also suggest to be more difficult to evaluate.

Based on our theory, the corporate debt from industry sectors with lower information costs are more

likely to exhibit an increase in the extend of information acquisition by investors after observing a

firm in the industry that suffers a ratings downgrade or earnings warning.
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Finally, the second prediction may also be tested in the market for bank commercial paper,

which is rolled over frequently. Apart from a downgrade or an earnings warning, a crisis elsewhere

could also be a downward revision of another bank’s asset quality by the supervisor. Since macro

variables appear to have a large effect on bank credit losses (see, for instance, Buncic et al. (2019)),

such a downgrade of a bank or supervisory action may trigger question not only regarding the

direct exposure of other banks, but also regarding the role played by negative macro risk factors

that are common to all banks. Again, an empiricist would need to separate circumstances under

which information about the exposure of other banks is easy to acquire from those where it may be

difficult. To this end, the opaqueness and complexity of banks play an important role, which may

be affected by the extend of securitization activities, cross-border linkages and the organizational

structure (Flannery et al. 2013; Cetorelli and Goldberg 2014; Goldberg 2016).

5 Discussion

We start with welfare implications (section 5.1) and transparency (section 5.2). Next, we differen-

tiate our result of contagion after a wake-up call from the information contagion literature reviewed

in the introduction (section 5.3). Then, we discuss the negative skewness assumption and allow for

a biased macro shock (section 5.4). Finally, we discuss other robustness issues (section 5.5).

5.1 Welfare

We discuss two measures: (i) utilitarian welfare and (ii) the ex-ante probability of regime change.

Utilitarian welfare is measured as the expected payoffs of investors. This measure is particularly

relevant for the application of an investment game. For the parameters consistent with Assumption

1, the ex-ante utilitarian welfare weakly decreases in the information cost c. To see this, first

observe that v(n2, f ) is positive since individual investors can only gain from more information.

Second, recall from Lemma 4 that there is a strategic complementarity in information choices, so

it is beneficial for investors to become informed from both an individual and a social viewpoint.

As a result, an increase in c has an unambiguously negative effect on utilitarian welfare.

The second welfare measure considered is the ex-ante probability of regime change, arguably a
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key variable of interest for a policymaker who wants to avoid a bank run or a currency attack. In

general, the relationship between the information cost and ex-ante welfare is ambiguous and dif-

ficult to analyze. Specifically when comparing the scenarios where investors acquire information

after observing a crisis in region 1 with the scenario where they do not acquire information, the

ex-ante probability of regime change can be higher or lower, depending on parameters.

Interestingly, we find that opacity can be good in our model. There are cases where the prob-

ability of regime change is higher if investors acquire information after a crisis in region 1 than

if they never acquire information. To illustrate this point, we again consider the special case of

γ = µ = p = 1
2 (as in Figures 1-4) but also invoke stronger conditions than in Assumption 1.

Proposition 4 Opacity can be bliss. The ex-ante probability of regime change can be higher or

lower for an intermediate information cost, c ∈ (c,c), than for high cost, c > c. An example

for a higher ex-ante probability of regime change when investors acquire information arises for

µ = γ = p = 1
2 , s = 1 and a sufficiently small α2.

Proof See Appendix A.4.

This result is reminiscent of Dang et al. (2015) who show that ignorance can increase welfare.

While we do not wish to draw a general policy recommendation from the special case analyzed in

Proposition 4, it does show that a lower information costs can reduce a measure of welfare.

5.2 Transparency

Next, we study how the incentives to acquire information are affected by transparency, measured

by α2 (e.g. Morris and Shin (2002)). Depending on the application, such an increase in the public

signal precision can, for instance, be interpreted as an increase in market disclosure standards, the

precision of information provided by rating agencies or as an increase in the transparency of bank

stress tests. In the context of the debate about bank stress tests, higher transparency can be seen as

a commitment of the banking regulator to disclose more detailed bank-specific information.

The general case is difficult to analyze analytically and we examine a special case where the

incentives to acquire information increase in transparency. In particular, we consider the special
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case of Proposition 4 and further simplify the analysis by imposing symmetry that can be achieved

if α1→ 0. Under the sufficient condition that ∆ is high and α2 is low, we find a positive association

between transparency and the incentives to acquire information. Proposition 5 summarizes.

Proposition 5 Transparency. If µ = γ = p = 1
2 , s = 1, sufficiently high ∆ and sufficiently low

α1,α2 , then greater transparency increases the incentives to acquire information:

dv(1, f )
dα2

> 0, f ∈ {0,1}. (10)

Proof See Appendix A.5.

Figure 5 shows this result for parameters used in previous figures. The analytical result of

Proposition 5 extends to larger values of s and to all n2 ∈ [0,1], suggesting that our result is not

confined to the somewhat restrictive set of sufficient conditions stated in the proposition. The com-

plementary relationship between disclosure and information acquisition established in Proposition

5 is, however, not a general result and we invoke stronger conditions as in Assumption 1.

With greater transparency, higher incentives to acquire information arise from the larger benefit

of tailoring the signal thresholds to the realized macro shock. Intuitively, an increase in trans-

parency is associated with less aggressive attacks against the regime if the prior about the funda-

mentals is strong, which occurs if investors observe m = ∆. At the same time, greater transparency

is associated with more aggressive attacks against the regime if the prior about the fundamentals

is weak, which occurs if investors observe m =−s∆. Hence, signal thresholds diverge. This effect

is associated with an increase in the value of information and dominates for the case considered in

Proposition 5, opposing effects stemming from the curvature of the distribution functions.

While we cannot draw a general policy implication from the special case analyzed in Proposition

5, we can reject the view that more public disclosure inevitably reduces information acquisition.

This observation contrasts with some of the literature that has analyzed the impact of transparency

on information acquisition in coordination games. In the context of a beauty contests with private

information acquisition, Colombo et al. (2014) find a crowding-out effect of public information.

The incentives to acquire more precise private information decrease in the public signal precision.

In contrast, Szkup and Trevino (2015) study continuous information choice subject to a convex
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Figure 5: Value of information and the proportion of informed investors with and without a wake-
up call. Solid lines are as in the left panel of Figure 2, the dashed and dotted lines show the lower
value of information due to lower transparency (lower α2). Other parameters are as in Figure 1.

information cost that is homogeneous across investors. They analyze efficiency when information

choices are complements or substitutes, and the trade-off between public and private informa-

tion, focusing on the precision of public information. Ahnert and Kakhbod (2017) study binary

private information choice subject to heterogeneous information costs, finding that greater dis-

closure sometimes increases fragility. In contrast, we study the acquisition of publicly available

information in a regime change game. Finally, there is an earlier literature studying the effect of

transparency on the incidence of a regime change with exogenous information (Morris and Shin

1998; Heinemann and Illing 2002; Bannier and Heinemann 2005).

5.3 Information contagion

There exists a literature on information contagion. Manz (2010) establishes information contagion

due to ex-post correlated fundamentals in a global games framework. Acharya and Yorulmazer

(2008) show that the funding cost of one bank increases after bad news about another bank when

the banks’ loan portfolio returns have a common factor. To avoid information contagion ex post,

banks herd their investment ex ante. Allen et al. (2012) compare the impact of information con-

tagion on systemic risk across asset structures. Adverse news about the solvency of the banking

system leads to runs on multiple banks.

We can nest a version of the standard information contagion channel as a special case of our

model with endogenous information in which investors are uncertain about the common compo-

nent of regional fundamentals and update their beliefs after observing a crisis elsewhere. The
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information contagion result purely relies on Bayesian updating of uninformed investors. That is,

when the information cost is high, c > v(1,1)≡ c̃ > c, information acquisition never occurs.

Proposition 6 Information contagion. If c > c̃, then there exists a unique monotone perfect

Bayesian equilibrium in region 2 in which no investor acquires information, n∗2 = 0. In this case, a

crisis in region 2 is more likely after a crisis in region 1 than after no crisis in region 1:

Pr{Θ2 < Θ
∗
U | f = 1}> Pr{Θ2 < Θ

∗
U | f = 0}. (11)

Proof See Appendix A.6.

Proposition 6 compares the probability of a crisis in region 2 conditional on whether a crisis

occurred in region 1. For a sufficiently high information cost, investors in region 2 choose not

to acquire information irrespective of the occurrence of a crisis in region 1. In this case, a crisis

in region 1 is unfavorable news about the fundamental in region 1. Since the macro shock is a

common component of both regional fundamentals, this crisis is also unfavorable news about the

fundamental in region 2. As a result, the re-assessment of the local fundamental Θ2 via Bayesian

updating increases the probability of a crisis in region 2.

Different to the result on wake-up contagion, the result of Proposition 6 only rests on Bayesian

updating about the macro shock but not on investors’ endogenous (differential) information choice,

which is at the heart of our model and allows to isolate the wake-up call component of contagion.

5.4 Negative skewness and a biased macro shock

In this section, we further discuss the importance of the negative skewness of the macro shock as

the key driver of the differential information choice (Proposition 2), which underpins our wake-up

call contagion channel. Moreover, we show the robustness of our main results to two variations of

our model. We proceed by first discussing a special case of the model with s = 1 to demonstrate

that s > 1 is crucial for the differential information choice. Second, we consider a modified setup

where we engineer offsetting changes of ∆ that allow us to hold the variance of the macro shock

constant when s changes. Third, we consider a setup where s and q can be varied independently.
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We start with a special case of our model where µ = γ = 1
2 , as in Figures 1-4. This simplifies the

analysis and allows to discuss the role of the parameter s in a transparent way. For s = 1, the results

in Lemma 3 continue to hold and we can show that the first and third inequality in Proposition 2

remain valid. However, the second inequality of Proposition 2 fails to hold because the value of

information is identical in both scenarios when s = 1. The result is summarized in Corollary 2.

Corollary 2 If µ = γ = 1
2 and s = 1, then v(n2,0) = v(n2,1), ∀n2 ∈ [0,1].

Proof See Online Appendix A.10.1.

Corollary 2 highlights the role played by s > 1 for the differential information choice. Negative

skewness drives a wedge between the relative incentives to acquire information, making informa-

tion acquisition more valuable after observing a crisis. This leads to a strong Bayesian updating

channel and whips around probabilities of tail events, focusing investor attention on downside risk.

Next, we study a version of the model with µ = γ = 1
2 in which changes in s are offset by

changes in ∆ in order to keep the variance of the macro shock constant at some χ > 0 as s changes:

∆(s)≡
√

χ

p(1+ s)
> 0, Var[m] = χ.

Following an analogous argument as in Corollary 2, we find again no differential information

choice if s = 1. Instead, under sufficient conditions akin to Assumption 1, the value of information

is higher after observing a crisis, provided s > 1 is sufficiently high (see Online Appendix A.10.2).

Finally, we consider the case when s and q can vary independently. To be able to compare with

our baseline model, we suppose that p = q. If s = 1, the argument in the proof of Corollary 2

is unchanged and we find that there is no differential information choice. For s > 1 the macro

shock is biased, E[m] < 0. Under sufficient conditions akin to Assumption 1, inequality (7) of

Proposition 2 continues to hold with the addition that the probability of the negative macro shock

is sufficiently small (see Online Appendix A.10.3). Specifically, the value of information is higher

after observing a crisis in region 1, provided s > 1 is sufficiently high. Regarding the wake-up

call contagion result in Proposition 3, we face the challenge that the biased macro shock can lead

to an opposing effect. Nevertheless, using the same parameters as in Figure 1, the left panel of
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Figure 6 illustrates that the total effect has the desired sign such that inequality (8) of Proposition 3

continues to hold for all s > 1: we have that Pr{Θ2 < Θ∗I (m)|m = 0}> Pr{Θ2 < Θ∗U | f = 0}. If ∆

is higher, the right-hand side of the inequality is lower for all values of s, because a higher positive

macro shock leads to a more favorable belief about Θ2 after not observing a crisis in region 1.
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Figure 6: Wake-up call contagion for the baseline model and for a modified model where s and
q can vary independently. We vary s from 1 to 5 and compare the crisis probabilities in region 2.
As in Figure 4, Pr{Θ2 < Θ∗I (m)|m = 0} = 1/2 is unaffected and identical in both models [black
solid line]. In the left (right) panel we draw Pr{Θ2 < Θ∗U | f = 0} for the baseline (modified) model
if ∆ = 1/2 [dark grey] and if ∆ = 1/5 [light grey]. For s = 1 the probability of regime change is
identical. The other parameter values are as in Figure 1.

This result is, however, not guaranteed to hold. When reducing ∆ from 1/2 to 1/5 in the right

panel of Figure 6 we can see that inequality (8) is for some intermediate values of s violated in the

modified model where s and q can vary independently (light grey line).

5.5 Other robustness issues

Our analytical results are derived under the conditions of Assumption 1. Given that the conditions

might seem restrictive, it is worth noting that the conditions are sufficient but not necessary for

our results (see Figure 4, for instance). Most importantly, the benchmark parameter values used

for the numerical analysis provided in the figures illustrate that wake-up call contagion also holds

for a high probability of the zero macro shock, suggesting that the bound η is merely relevant

for analytical tractability. Also the bounds on the precision of private and public signals are not

more stringent than the standard sufficient conditions for equilibrium uniqueness in global games

models (Morris and Shin 2003; Svensson 2006).
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Next, our model setup abstracts from information acquisition in region 1 to simplify the expo-

sition. This allows us to focus on how the wake-up call of a crisis in region 1 affects the incentives

to acquire information in region 2 and may therefore result in contagion. Allowing for informa-

tion acquisition in region 1 does not affect our main insights. For some intermediate region of

information costs, there is a unique equilibrium with no information acquisition in region 1 and

information acquisition in region 2 only after a crisis in region 1.

Below we discuss two extensions and an alternative modeling approach. First, an important

channel of our paper is how a wake-up call affects the incentives of investors in region 2 to acquire

information about the macro shock. An additional channel of interest could be private information

acquisition with convex costs (Szkup and Trevino 2015), whereby investors improve the precision

of their private information at a cost after the wake-up call. It can be shown that the effect of

wake-up call contagion is even larger when private information acquisition is also allowed.

Second, one could consider an alternative model setup, where learning is not about the realiza-

tion of the macro shock but about whether region 2 is exposed to the macro shock itself. In this

setup, two macro shock realizations suffice, so 1− p−q = 0, where the scenario of no exposure to

the macro shock is equivalent to m = 0. As before, both observing a crisis in region 1 and learning

about an exposure to the macro shock suggest that the fundamentals in region 2 are likely to be af-

fected by a negative macro shock that also contributed to the crisis in region 1. Conversely, learning

about no exposure to the macro shock after observing a crisis in region 1 is favorable information

for the local fundamentals in region 2. No crisis in region 1 would still imply a more favorable

view about the fundamental in region 2 when an exposure to the macro shock has positive weight

due to the Bayesian updating channel. Hence, the wake-up call component of contagion can be

isolated in the same way in this alternative model setup, and the incentives to acquire information

about the macro shock in such an alternative setup are similar to the present version.

Third, we have so far considered the case of a perfect signal about the macro shock. The advan-

tage of a perfectly revealing signal is that we can cleanly isolate the wake-up call component of

contagion. A generalization to noisy signals is possible without altering the key mechanisms. One

approach is to assume that investors only observe the publicly available signal with probability

z ∈ (0,1) upon incurring the information acquisition cost. More concretely, the hiring of analysts
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only leads with a certain probability to a conclusive understanding of the institutional character-

istics such as structural or policy distortions that are shared across regions. As a result, there is

always a positive mass of investors who remain uninformed. This variation of our model is already

captured by our analysis of the general case when 0 < n2 < 1. Another approach is to consider an

environment where investors who incur the cost always observe a signal about the macro shock, but

they do not know whether the signal is correct. In this case, we have to use the mixture distribution

approach also for informed investors, which adds an additional layer of complexity. Again, in a

modified setup it would not be possible to cleanly isolate the wake-up call component of contagion

as in our main model in which all informed investors observe m = 0.

6 Conclusion

We offer a theory of contagion to explain how wake-up calls may transmit financial crises. We

study global coordination games of regime change that are often applied to currency attacks, bank

runs, and debt crises. There are two regions whose only link is an initially unobserved and neg-

atively skewed macro shock. A crisis in region 1 is a wake-up call for investors in region 2 and

induces them to re-assess the local fundamental in region 2. Since crises are rare events and the

macro shock is negatively skewed, investors have an incentive to acquire information only after

this wake-up call. The crisis probability in region 2 is higher after a crisis in region 1 than after no

crisis, even if investors learn that the macro shock is zero and, hence, that there is no exposure to

the crisis in region 1. In short, we isolate the wake-up call component of contagion without ex-post

exposure to the crisis region, common lender effects, or balance sheet links.

A distinctive feature of our theory is that it combines information acquisition with a Bayesian

updating channel. The optimal information choices of investors are driven by wake-up calls and

shape the fundamental re-assessment. Information choices are strategic complements but a unique

equilibrium obtains for intermediate information cost levels. We describe how the incentives to

acquire information about the macro shock depend on distributional characteristics of the macro

shock. Based on these results, we derive two testable implications about the information choices

of investors. We argue for their consistency with empirical evidence and discuss how these can be

tested in future work.
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Cole, H., D. Neuhann, and G. Ordoñez (2016). Debt Crises: For Whom the Bell Tolls. Mimeo.

Colombo, L., G. Femminis, and A. Pavan (2014). Information Acquisition and Welfare. Review of Economic
Studies 81, 1438–1483.

Corsetti, G., A. Dasgupta, S. Morris, and H. S. Shin (2004). Does One Soros Make a Difference? A Theory
of Currency Crisis with Large and Small Traders. Review of Economic Studies 71(1), 87–113.

Corsetti, G., B. Guimaraes, and N. Roubini (2006). International lending of last resort and moral hazard: A
model of IMF’s catalytic finance. Journal of Monetary Economics 53(3), 441–471.

Corsetti, G., P. Pesenti, and N. Roubini (1999). What caused the Asian currency and financial crisis? Japan
and the world economy 11(3), 305–373.

Da, Z., J. Engelberg, and P. Gao (2011). In Search of Attention. Journal of Finance 66(5), 1461–99.

Dang, T. V., G. B. Gorton, and B. Holmström (2015). Ignorance, Debt and Financial Crises. Mimeo.

Dasgupta, A. (2004). Financial Congtagion Through Capital Connections: A Model of the Origin and
Spread of Bank Panics. Journal of the European Economic Association 2, 1049–1084.

Dasgupta, A., R. Leon-Gonzales, and A. Shortland (2011). Regionality revisited: An example of the direc-
tion of spread of currency crises. Journal of International Money and Finance 30, 831–848.

33



Drazen, A. (1999). Political Contagion in Currency Crises. NBER Working Paper 7211.

Edmond, C. (2013). Information Manipulation, Coordination, and Regime Change. Review of Economic
Studies 80(4), 1422–1458.

Flannery, M. J., S. H. Kwan, and M. Nimalendran (2013). The 2007-09 Financial Crisis and Bank Opaque-
ness. Journal of Financial Economics 22(1), 55–84.

Flood, R. and P. Garber (1984). Collapsing exchange-rate regimes: Some linear examples. Journal of
International Economics 17(1-2), 1–13.

Forbes, K. J. (2012). The ’Big C’: Identifying and Mitigating contagion. The Changing Policy Landscape.
2012 Jackson Hole Symposium, 23–87.

Giordano, R., M. Pericoli, and P. Tommasino (2013). Pure or Wake-up-Call Contagion? Another Look at
the EMU Sovereign Debt Crisis. International Finance 16(2), 131–160.

Glick, R. and A. K. Rose (1999). Contagion and trade: Why are currency crises regional? Journal of
International Money and Finance 18, 603–617.

Goldberg, L. S. (2016). Cross-border banking flows and organizational complexity in financial conglomer-
ates. Mimeo.

Goldstein, I. and A. Pauzner (2004). Contagion of Self-Fulfilling Financial Crises Due to Diversification of
Investment Portfolios. Journal of Economic Theory 119, 151–183.

Goldstein, I. and A. Pauzner (2005). Demand Deposit Contracts and The Probability of Bank Runs. Journal
of Finance 60(3), 1293–1327.

Goldstein, M. (1998). The Asian financial crisis causes, cures, and systematic implications. Washington
D.C.: Institute for International Economics.
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A Online Appendix

A.1 Equilibrium in region 1

To simplify the exposition, we focus on the case of uninformed investors, n1 = 0. We first discuss

Bayesian updating of uninformed investors receiving a private signal xi1 about Θ1 and derive the

equilibrium conditions in section A.1.1. Next, we prove Lemma 1 in section A.1.2.

A.1.1 Deriving the equilibrium in region 1 for the case n1 = 0

Bayesian updating. Uninformed investors in region 1 use Bayes’ rule to form a belief about the

macro shock, where p̂≡ Pr{m = ∆|xi1}, and q̂≡ Pr{m =−s∆|xi1}:

p̂ = pPr{xi1|m = ∆}Γ−1
1 q̂ = qPr{xi1|m =−s∆}Γ−1

1 , (12)

where Γ1 = pPr{xi1|m = ∆}+qPr{xi1|m =−s∆}+(1− p−q)Pr{xi1|m = 0} and:

Pr{xi1|m}=
1√

Var[xi1|m]
φ

(
xi1−E[xi1|m]√

Var[xi1|m]

)
=

(
1
α
+

1
β

)− 1
2

φ

(
xi1− (µ +m)√

1
α
+ 1

β

)
.

Using p = qs, we obtain d p̂
dxi1

> 0, dq̂
dxi1

< 0, and d(1−p̂−q̂)
dxi1

[
xi1− µ + 1−s

2 ∆

]
≤ 0, with strict in-

equality if xi1 6= µ + 1−s
2 ∆. An investor places more weight on the probability of a positive (neg-

ative) macro shock after a higher (lower) private signal. The relationship between the posterior

probability of a zero macro shock and the private signal, xi1, is non-monotone. It increases if

xi1 > x1(s,∆)≡ µ + 1−s
2 ∆. The bound is below µ if the macro shock is negatively skewed (s > 1).

Equilibrium conditions. For the case of n1 = 0, the system of equations comprises the critical

mass and indifference condition for region 1. The critical mass condition states that the proportion

of attacking investors A∗1(m) equals the fundamental threshold Θ∗1(m) for each realized m:

Θ
∗
1(m) = Φ

(√
β [x∗1−Θ

∗
1(m)]

)
,∀m ∈ {−s∆,0,∆}. (13)

Given the invariant attack rule, the fundamental thresholds are equal, Θ1 ≡ Θ∗1(m) ∀m. The indif-

ference condition states that an uninformed investor with threshold signal xi1 = x∗1 is indifferent
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whether to attack:

p̂∗Ψ(Θ∗1,x
∗
1,∆)+ q̂∗Ψ(Θ∗1,x

∗
1,−s∆)+(1− p̂∗− q̂∗)Ψ(Θ∗1,x

∗
1,0)≡ J(Θ∗1,x

∗
1) = γ1, (14)

where p̂∗= p̂(x∗1), q̂∗= q̂(x∗1) and Ψ(Θ∗1,x
∗
1,m)≡Φ

(
Θ∗1
√

α +β− α(µ+m)+βx∗1√
α+β

)
. Solving equation

(13) for x∗1 and plugging into equation (14), we arrive at one equation in one unknown.

Monotone equilibria. Using the results of Milgrom (1981) and Vives (2005), we can show that

the best-response function of an individual investor strictly increases in the threshold used by other

investors. Using Proposition 1 of Milgrom (1981), we conclude that Pr{Θ1 ≤Θ∗1|xi1} monotoni-

cally decreases in xi1. Hence, d Pr{Θ1≤Θ∗1|x̂1}
dΘ∗1

> 0. Equation (14) then implies:

0≤ dΘ̂1(x̂1)

dx̂1
≤
(

1+
√

2πβ−1
)−1

. (15)

Thus, our focus on monotone equilibria is valid. Equation (15) is used to determine conditions

sufficient for a unique monotone Bayesian equilibrium in Lemma 1.

A.1.2 Proof of Lemma 1

The proof consists of two steps. First, we show that J(Θ1,x1) ≡ J(Θ1)→ 1 > γ1 as Θ1→ 0, and

J(Θ1)→ 0 < γ1 as Θ1→ 1. Second, we show that dJ(Θ1)
dΘ1

< 0 for some sufficiently high but finite

values of β , such that J strictly decreases in Θ1. We denote this lower bound as β
1
. Therefore, if

Θ∗1 exists, it is unique. Notably, this argument implicitly defines the lower and upper dominance

regions of the game. However, as Θ1 can be any real number, the limit used here is one-sided.

Step 1 (limiting behavior): We solve equation (13) for x∗1, plug into equation (14) and let

Ψ(Θ1,x1,m)≡Ψ(Θ1,m). Observe that J(Θ1) is a weighted average of the Ψ(Θ1,m)’s evaluated

at the different levels of m. As Θ1→ 0, then Ψ(Θ1,m)→ 1 for any m ∈ {−s∆,0,∆}, so J(Θ1)→

1 > γ1. Likewise, as Θ1→ 1, then Ψ(Θ1,m)→ 0 for any m ∈ {−s∆,0,∆}, so J(Θ1)→ 0 < γ1.
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Step 2 (strictly negative slope): The total derivative of J is:

dJ(Θ1)

dΘ1
= p̂(x1(Θ1))

dΨ(Θ1,∆)

dΘ1
+ q̂(x1(Θ1))

dΨ(Θ1,−s∆)

dΘ1

+ (1− p̂(x1(Θ1))− q̂(x1(Θ1)))
dΨ(Θ1,0)

dΘ1

+
d p̂(x1(Θ1))

dx1

dx1(Θ1)

dΘ1

[
Ψ(Θ1,∆)−Ψ(Θ1,0)

]
+

dq̂(x1(Θ1))

dx1

dx1(Θ1)

dΘ1

[
Ψ(Θ1,−s∆)−Ψ(Θ1,0)

]
. (16)

The proof proceeds by inspecting the individual terms of equation (16). For the analysis of the

special case where all investors are informed, n1 = 1, we can use a result from standard global

games models: dΨ(Θ1,m)
dΘ1

< 0 if β > α2

2π
for all m. Thus, the first three components of the sum

are negative and finite for sufficiently high but finite private noise. The sign of the two terms in

square brackets in the last two summands in (16) is negative and positive, respectively: Ψ(Θ∗1,∆)≤

Ψ(Θ∗1,0) and Ψ(Θ∗1,∆) ≥ Ψ(Θ∗1,0). However, the difference vanishes in the limit when β →

∞. The last terms to consider are d p̂(x1(Θ1))
dx1(Θ1)

dx1
dΘ1

and dq̂(x1(Θ1))
dx1(Θ1)

dx1
dΘ1

. Given the previous sufficient

conditions on the relative precision of the private signal:

0 <
dx1

dΘ1
= 1+

(√
βφ(Φ−1(Θ1))

)
< 1+

√
2πα−1.

The derivative is finite for β → ∞. Taken together with the zero limit of the first factor of the third

and forth term, this terms vanish in the limit. Note that for β → ∞ the updated prior distribution

becomes degenerate. We have p̂= 1 for x> µ+ ∆

2 and p̂= 0 for x< µ+ ∆

2 . Moreover, 1− p̂− q̂= 1

for µ + −s∆

2 < x < µ + ∆

2 and q̂ = 1 for x < µ + −s∆

2 . Clearly, there are some discontinuities. At

the same time, it must be that any Θ∗1 and x∗1 ≈ Θ∗1 solving the system has to be very close to µ

for large values of β . As a result, it is guaranteed that d p̂(x1(Θ1))
dx1

= 0 and dq̂(x1(Θ1))
dx1

= 0 is in the

permissible range. Hence, by continuity, there exists a finite precision level β > β
1
∈ (0,∞) such

that dJ(Θ1)
dΘ1

< 0 for all β > β
1
. This concludes the proof of Lemma 1.

A.2 Equilibrium in region 2

To study the equilibrium in region 2, we first analyze the coordination stage in section A.2.1. The

main results are on Bayesian updating and on the existence of unique attack rules are summarized
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in Lemma 2 and Corollary 3, respectively. Next, we analyze the information stage in sections

A.2.2 and A.2.3. The main results are summarized in Lemma 3, which describes how fundamental

and signal thresholds depend on the proportion of informed investors and in Lemma 4, which

establishes a strategic complementarity in information choices. Finally, we prove Proposition 2 in

section A.2.4 and Proposition 1 in section A.2.5.

A.2.1 Coordination stage in region 2

The optimal behavior of investors in region 2 at the coordination stage can be described by extend-

ing the results from region 1. Let f ∈ {0,1} indicate whether a crisis occurred in region 1, where

f = 1 corresponds to a crisis and f = 0 corresponds to no crisis. Investors use the information

about region 1 to update their prior about their beliefs about the distribution of the macro shock,

using Bayes’ rule:

p′ ≡ Pr{m = ∆| f} = pPr{ f |m = ∆} Γ
−1
2 (17)

q′ ≡ Pr{m =−s∆| f} = qPr{ f |m =−s∆} Γ
−1
2 , (18)

with Pr{ f = 1|m} = Pr{Θ1 < Θ∗1|m} and Γ2 ≡ pPr{ f |m = ∆}+ qPr{ f |m = −s∆}+ (1− p−

q)Pr{ f |m = 0}.

Lemma 2 states the evolution of the beliefs about the macro shock.

Lemma 2 Beliefs about the macro shock. The wake-up call of a crisis in region 1 is associated
with less favorable beliefs about the macro shock, while no crisis in region 1 is associated with
more favorable beliefs about the macro shock: p′ < p, q′ > q i f f = 1

p′ > p, q′ < q i f f = 0.

Moreover, we can state that:
p′

1−q′ <
p

1−q ,
q′

1−p′ >
q

1−p i f f = 1 and n1 ∈ {0,1}
p′

1−q′ >
p

1−q ,
q′

1−p′ <
q

1−p i f f = 0 and n1 ∈ {0,1}.

The first set of inequalities are an extension of a comparative static in Morris and Shin (2003)

and Vives (2005). For the special case of n1 = 1, we have dΘ∗1(1,m)
dm < 0. Similarly for the general
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case, a more favorable information about fundamentals is associated with a lower fundamental

threshold. The results follow from Bayesian updating in equations (17) and (18). The second set

of inequalities on the right-hand side follow from d
dm

(
Pr{ f = 1|m}− Pr{ f = 0|m}

)
< 0. The

results are immediate for n1 ∈ {0,1} and also hold for the general case, n1 ∈ [0,1], if the thresholds

are monotone in nt . We show this monotonicity in Lemma 3.

Using the updated p′ and q′ as weights, the belief about Θ2 prior to receiving a private signal xi2

follows again a mixture distribution. It is an average over the cases of negative, zero and positive

macro shocks with weights depending on f :

Θ2| f ≡ p′ [Θ2|m =−s∆]+q′ [Θ2|m = ∆]+ (1− p′−q′) [Θ2|m = 0] . (19)

For the general case of n2 ∈ [0,1] we have seven equations in seven unknowns. Three criti-

cal mass conditions state that the proportion of attacking investors A∗2(m) equals the fundamental

threshold Θ∗2(m) for each realized m ∈ {−s∆,0,∆}:

Θ
∗
2(m) = n2Φ

(√
β [x∗I (m)−Θ

∗
2(m)]

)
+(1−n2)Φ

(√
β [x∗U −Θ

∗
2(m)]

)
, (20)

where the short-hands are Θ∗2(m) ≡ Θ∗2(n2,m), x∗I (m) ≡ x∗2I(n2,m), and x∗U ≡ x∗2U(n2) for the fun-

damental threshold and the signal thresholds of informed and uninformed investors, respectively.

The first indifference condition states for each n2 ∈ [0,1] that an uninformed investor with

threshold signal xi2 = x∗U is indifferent whether to attack:

p̂′∗Ψ(Θ∗2(∆),x
∗
U ,∆)+ q̂′∗Ψ(Θ∗2(−s∆),x∗U ,−s∆) (21)

+(1− p̂′∗− q̂′∗)Ψ(Θ∗2(0),x
∗
U ,0)︸ ︷︷ ︸

≡J(n2,Θ
∗
2(∆),Θ

∗
2(−s∆),Θ∗2(0),x

∗
U )

= γ2

where p̂′∗ = p̂′(x∗U) and q̂′∗ = q̂′(x∗U) solve equation (12) after replacing p and q with p′ and q′.

Moreover, Ψ(Θ∗2(m),x∗d,m)≡Φ
(
Θ∗2
√

α +β − α(µ+m)+βx∗d√
α+β

)
for d ∈ {I,U} and m ∈ {−s∆,0,∆}.

Three additional indifference conditions, one for each realized macro shock, state that an in-

formed investor is indifferent between attacking or not upon receiving the signal xi2 = x∗I (m):

Ψ(Θ∗2(n2,m),x∗I (m),m) = γ2 ∀ m ∈ {−s∆,0,∆}. (22)
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For the special case of the equilibrium in region 1 with n1 = 0, we had two thresholds x∗1 and Θ∗1

for each m. There, the objective was to establish aggregate behavior by inserting the critical mass

condition, which states x∗1 in terms of Θ∗1, into the indifference condition. This yields one equation

implicit in Θ∗1. We pursue a similar strategy here and express the equilibrium in terms of Θ∗2(−s∆),

Θ∗2(0) and Θ∗2(∆) only.

To simplify the system of equations, we can use the following insight. Since uninformed in-

vestors do not observe the macro shock realization, the signal threshold must be identical across

these realizations, x∗U ≡ x∗U(−s∆) = x∗U(0) = x∗U(∆). In the following steps, we derive this threshold

for either realization of m by using Θ∗2(m) and equalize both expressions. First, we use the critical

mass conditions in equation (20) for Θ∗2(m) to express x∗U as a function of each Θ∗2(m) and x∗I (m).

Second, we use the indifference condition of informed investors for each m to obtain x∗I (m) as a

function of Θ∗2(m). Thus, ∀m:

x∗U(m) = Θ
∗
2(m)+Φ

−1
(Θ∗2(m)−n2Φ

(α(Θ∗2(m)−(µ+m))−
√

α+β Φ−1(γ2)√
β

)
1−n2

)
/
√

β . (23)

Hence, for m ∈ {−s∆,0,∆}, there exists a β
2
∈ (0,∞) such that for all β > β

2
: dx∗U (m)

dΘ∗2(m) > 0.

Since the signal threshold is the same for an uninformed investor, subtracting equation (23)

evaluated at m = 0 from the same equation evaluated at m =−s∆ or at m = ∆ must yield zero. This

yields the first two pair-wise implicit relationships between Θ∗2(−s∆), Θ∗2(0) and Θ∗2(∆):

K1(n2,Θ
∗
2(−s∆),Θ∗2(0))≡ x∗U(0)− x∗U(−s∆) = 0 (24)

K2(n2,Θ
∗
2(0),Θ

∗
2(∆))≡ x∗U(0)− x∗U(∆) = 0. (25)

Now, we construct the third implicit relationship between the three aggregate thresholds by insert-

ing equation (23) evaluated at each m in Ψ(Θ∗2(m),x∗U(m),m), respectively, and in p̂(p′) and q̂(q′)

as used in J:

L(n2,Θ
∗
2(−s∆),Θ∗2(0),Θ

∗
2(∆))≡ J(n2,Θ

∗
2(−s∆),Θ∗2(0),Θ

∗
2(∆)) = γ2. (26)

Corollary 3 establishes existence and uniqueness for a given n2 ∈ [0,1] under the conditions of

Assumption 1 by analyzing the system of equations given by (24), (25) and (26).
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Corollary 3 Existence of unique attack rules in region 2. If private information is sufficiently
precise, then for any proportion of informed investors in region 2, n2 ∈ [0,1], there exist unique
attack rules for informed investors, a∗I (m, ·), and for uniformed investors, a∗U(·).

Proof The first and second equation depend only on two thresholds, K1(n2,Θ
∗
2(−s∆),Θ∗2(0)) = 0

and K2(n2,Θ
∗
2(0),Θ

∗
2(∆))= 0, while the third depends on all three, L(n2,Θ

∗
2(−s∆),Θ∗2(0),Θ

∗
2(∆))=

γ2. In a first step, we analyze, for a given n2, the relationship between Θ2(−s∆) and Θ2(0), as gov-

erned by K1. We obtain ∂K1
∂Θ∗2(0)

> 0, ∂K1
∂Θ2(−s∆) < 0, and ∂K1

∂Θ2(∆)
= 0. Hence, dΘ2(0)

dΘ2(−s∆) > 0 by the

implicit function theorem. Likewise, we analyze the relationship between Θ∗2(0) and Θ∗2(∆), as

governed by K2. We obtain ∂K2
∂Θ∗2(0)

> 0, ∂K2
∂Θ2(−s∆) = 0, and ∂K2

∂Θ2(∆)
< 0. Hence, dΘ2(0)

dΘ2(∆)
> 0. These

results do not require a bound on the precision of private information.

In a second step, we analyze, for a given n2, the relationship between all three fundamental

thresholds, as governed by L. We know from our analysis of the case of informed investors that
dΨ(Θ2,m)

dΘ2
< 0 for all m if β > α2

2π
. Analogous to the argument in the proof of Lemma 1, there exists

a sufficiently high but finite value of the private precision such that ∂L
∂Θ2(m) < 0 for all m. Hence, in

the limit dΘ2(0)
dΘ2(−s∆) < 0 for a given Θ2(∆),

dΘ2(0)
dΘ2(∆)

< 0 for a given Θ2(−s∆), and dΘ2(∆)
dΘ2(−s∆) < 0 for a

given Θ2(0). By continuity, there exists a finite precision of private information, β
2
∈ (0,∞), that

guarantees the inequality if β > β
2
.

In a third step, we establish uniqueness conditional on existence. Thus suppose for now that

an equilibrium exists. Then, due to the monotonicity and the opposite signs of the respective

derivatives, we have that there is a single crossing of K1 and L in the (Θ2(−s∆),Θ2(0)) space and

a single crossing of K2 and L in the (Θ2(∆),Θ2(0)) space, as shown in Figure 7. Observe that

this is a “partial equilibrium” argument since the third threshold is taken as given. We now move

to a “general equilibrium” argument. Building on a second feature of the system, the opposite

signs of the respective derivatives are not only a sufficient condition for single crossings in the two

panels of Figure 7, but they also imply that Θ2(−s∆) and Θ2(0) are each decreasing in Θ2(∆) (left

panel), where an increase in Θ2(∆) shifts the L curve inwards. Likewise, Θ2(∆) and Θ2(0) are each

decreasing in Θ2(−s∆) (right panel). Hence, starting from a general equilibrium, any modification

of Θ2(∆) and Θ2(−s∆) must lead to a violation of the system of equations. Given ∂L
∂Θ2(∆)

< 0 and
∂L

∂Θ2(−s∆) < 0, the combination of fundamental thresholds (Θ∗2(−s∆),Θ∗2(0),Θ
∗
2(∆)) that satisfies

K1 and L in the (Θ2(−s∆),Θ2(0)) space and K2 and L in the (Θ2(∆),Θ2(0)) space is unique.
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Figure 7: Single crossing.

In a fourth step, we establish the existence of a combination of fundamental thresholds. Exis-

tence can be shown by proving the following sequence of points: (i) for the highest permissible

value of Θ2(−s∆), the value of Θ2(0) prescribed by K1 is strictly larger than the value of Θ2(0)

prescribed by L; (ii) for the lowest permissible value of Θ2(−s∆), the value of Θ2(0) prescribed by

K1 is strictly smaller than the value of Θ2(0) prescribed by L; (iii) for the highest permissible value

of Θ2(∆), the value of Θ2(0) prescribed by K2 is strictly larger than the value of Θ2(0) prescribed

by L; (iv) for the lowest permissible value of Θ2(∆), the value of Θ2(0) prescribed by K2 is strictly

smaller than the value of Θ2(0) prescribed by L; (v) for the lowest (highest) permissible value of

Θ2(−s∆), also Θ2(0) must be at its lowest (highest) permissible value from K1 and, hence, also

Θ2(∆) must be at its lowest (highest) permissible value from K2, leading to a violation of L in both

the (Θ2(−s∆),Θ2(0)) space and the (Θ2(∆),Θ2(0)) space; (vi) a successive increase (decrease) in

Θ2(0) shifts L continuously inwards (outwards) in both spaces until a fixed point is reached.

Before addressing points (i)-(iv), we start by analyzing the following auxiliary step. For any

Θ2(m)≥Θ∗2(1,m), it can be shown that:

∂

∂n2
Φ
−1
(Θ2(m)−n2Φ

(α(Θ2(m)−(µ+m))−
√

α+β Φ−1(γ2)√
β

)
1−n2

)
≥ 0 (27)

because J(1,Θ2)≤ γ2 for any m. Note that both the previous expression and the partial derivative

hold with strict inequality if Θ2(m) > Θ∗2(1,m). Inspecting the inside of the inverse of the cdf,
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Φ−1, we define the highest permissible values of Θ2(m) that are labeled Θ2(n2,m) for all m:

1 =
Θ2(n2,m)−n2Φ

(α(Θ2(n2,m)−(µ+m))−
√

α+β Φ−1(γ2)√
β

)
1−n2

. (28)

Hence, 1≥Θ2(1,m)≥Θ∗2(1,m) ∀m, where the first (second) inequality binds iff n2 = 0 (n2 = 1).

We now prove points (i) and (iii). Evaluate K1 and K2 at the highest permissible value, Θ2(0) =

Θ2(n2,0), which yields Θ2(n2,−s∆) and Θ2(n2,∆), respectively. Likewise, evaluate L at the high-

est permissible values, Θ2(n2,0) and Θ2(n2,−s∆), which yields Θ2(∆) < Θ2(n2,∆). Similarly,

evaluate L at Θ2(n2,0) and Θ2(n2,∆), which yields Θ2(−s∆) < Θ2(n2,−s∆). This proves points

(i) and (iii). Next, we proceed with points (ii) and (iv). We can similarly define the lowest per-

missible value of Θ2(m), which is labeled Θ2(n2,m) for all m. Now, 0≤Θ2(1,m)≤Θ∗2(1,m) ∀m,

where the first (second) inequality binds if and only if n2 = 0 (n2 = 1). Evaluate K1 and K2 at

the lowest permissible value, Θ2(0) = Θ2(n2,0), which yields Θ2(n2,−s∆) and Θ2(n2,∆), re-

spectively. Likewise, evaluate L at the lowest permissible values, Θ2(n2,0) and Θ2(n2,−s∆),

which yields Θ2(∆) > Θ2(n2,∆). Similarly, evaluate L at Θ2(n2,0) and Θ2(n2,∆), which yields

Θ2(−s∆) > Θ2(n2,−s∆). This proves points (ii) and (iv). The proof of points (v)-(vi) follows,

which completes the overall proof of Corollary 3.

A.2.2 Information stage in region 2: proportion of informed investors and equilibrium
thresholds

To characterize the value of information about the macro shock to investors in Appendix A.2.3,

we first describe how the fundamental and signal thresholds depend on the proportion of informed

investors, as summarized below.

Lemma 3 Proportion of informed investors and equilibrium thresholds. If Assumption 1 holds,
then:
(A) Boundedness. The fundamental thresholds in case of informed investors bound the fundamen-

tal thresholds in case of asymmetrically informed investors:

Θ∗2(1,∆)≤Θ∗2(n2,m)≤Θ∗2(1,−s∆) ∀m ∈ {−s∆,0,∆} ∀n2 ∈ [0,1]. (29)

(B) Monotonicity in fundamental thresholds. The fundamental threshold in the case of a neg-
ative (positive) macro shock increases (decreases) in the proportion of informed investors.
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Strict monotonicity is attained if and only if the fundamental thresholds are strictly bounded,
that is ∀n2 ∈ [0,1):

dΘ∗2(n2,−s∆)

dn2
=

 > 0 i f Θ∗2(n2,−s∆)< Θ∗2(1,−s∆)∧Θ∗2(n2,∆)> Θ∗2(1,∆)

= 0 i f Θ∗2(n2,−s∆) = Θ∗2(1,−s∆)∧Θ∗2(n2,∆) = Θ∗2(1,∆),
(30)

dΘ∗t (n2,∆)

dn2
=

 < 0 i f Θ∗2(n2,−s∆)< Θ∗2(1,−s∆)∧Θ∗2(n2,∆)> Θ∗2(1,∆)

= 0 i f Θ∗2(n2,−s∆) = Θ∗2(1,−s∆)∧Θ∗2(n2,∆) = Θ∗2(1,∆).
(31)

(C) Monotonicity in signal thresholds. As a consequence of the monotonicity in fundamental
thresholds:

d(x∗I (n2,−s∆)− x∗I (n2,∆)))

dn2
≥ 0, ∀ n2 ∈ [0,1), (32)

where x∗I (n2,−s∆)− x∗I (n2,∆))> 0, ∀ n2 ∈ [0,1].

(D) Uninformed investors. If n2 = 0 then:

[x∗I (n2,m)| f = 1]> [x∗I (n2,m)| f = 0], ∀ m ∈ {∆,−s∆,0}. (33)

Proof We prove the results of Lemma 3 in turn. Since the argument applies for both regions, we

use the subscript t. A general observation is that the updated belief on the probability of a positive

macro shock becomes degenerate: p̂→ p for α→ 0. Results (A) and (B) are closely linked, so we

start with them. It will be useful to consider a modified system of equations where either K1 or K2

are used alongside K3(nt ,Θ
∗
t (−s∆),Θ∗t (∆))≡ x∗tU(−s∆)− x∗tU(∆) = 0.

Results (A) and (B). This proof has three steps.

Step 1: We show in the first step that for 1− p− q→ 0 the fundamental thresholds Θ∗t (−s∆)

and Θ∗t (∆) in the case of asymmetrically informed investors lie either both within these bounds or

outside of them. As a consequence of p̂→ p, condition L(nt ,Θ
∗
t (−s∆),Θ∗t (∆)) = 0 prescribes that,

for any nt , the thresholds Θ∗t (∆) and Θ∗t (−s∆) are either simultaneously within or outside of the two

bounds given by the fundamental thresholds if all investors are informed, Θ∗t (1,∆) and Θ∗t (1,−s∆).

This is proven by contradiction. First, suppose that Θ∗t (∆)< Θ∗t (1,∆) and Θ∗t (−s∆)< Θ∗t (1,−s∆).

This leads to a violation of L(·) = 0 because J(·)> γt ∀ nt if α→ 0. Second, suppose that Θ∗t (∆)>

Θ∗t (1,∆) and Θ∗t (−s∆)>Θ∗t (1,−s∆). Again, leading to a violation because J(·)< γt ∀ nt if α→ 0.

By continuity, the results continue to hold provided that 1− p−q is sufficiently small. That is, there

exists a threshold η > 0, such that the result holds provided the sufficient condition 1− p−q < η .
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Step 2: We now derive the derivatives of the fundamental thresholds with respect to the propor-

tion of informed investors, dΘ∗t (m)
dnt

:

dΘ∗t (n,−s∆)

dnt
=

∣∣∣∣∣
−∂K1,2

∂nt

∂K1,2
∂Θt(nt ,0)

∂K1,2
∂Θt(nt ,∆)

−∂K3
∂nt

∂K3
∂Θt(nt ,0)

∂K3
∂Θt(nt ,∆)

− ∂L
∂nt

∂L
∂Θt(nt ,0)

∂L
∂Θt(nt ,∆)

∣∣∣∣∣
∣∣∣∣∣

∂K1,2
∂Θt(nt ,−s∆)

∂K1,2
∂Θt(nt ,0)

∂K1,2
∂Θt(nt ,∆)

∂K3
∂Θt(nt ,−s∆)

∂K3
∂Θt(nt ,0)

∂K3
∂Θt(nt ,∆)

∂L
∂Θt(nt ,−s∆)

∂L
∂Θt(nt ,0)

∂L
∂Θt(nt ,∆)

∣∣∣∣∣
≡ |M1|
|M|

(34)

where |M| ≡ det(M). Similarly we can derive dΘ∗t (n,0)
dnt

= |M2|
|M| and dΘ∗t (n,∆)

dnt
= |M3|
|M| .

To find |M|, recall from the proof of Proposition 3 that ∂K1
∂Θt(0)

> 0, ∂K1
∂Θt(−s∆) < 0 and ∂K1

∂Θt(∆)
= 0,

while ∂K2
∂Θt(0)

> 0, ∂K2
∂Θt(−s∆) = 0 and ∂K2

∂Θt(∆)
< 0. Furthermore, ∂K3

∂Θt(0)
= 0, ∂K3

∂Θt(∆)
< 0 and ∂K3

∂Θt(−s∆) >

0. Finally, ∂L
∂Θt(m) < 0 ∀m for a sufficiently high but finite value of β . As a result, |M| > 0 for a

sufficiently high but finite value of β , irrespective of which of the two systems is used. That is,

there exists a threshold β > 0, such that the result holds provided the sufficient condition β > β .

The proof proceeds by analyzing |M1|, |M2|, and |M3|. To do this, we first examine the deriva-

tives ∂K1
∂nt

, ∂K3
∂nt

and ∂L
∂nt

. Thereafter, we combine the results to obtain the signs of the determinants
∂K1
∂nt

= ∂xtU (0)
∂nt
− ∂xtU (−s∆)

∂nt
, ∂K2

∂nt
= ∂xtU (0)

∂nt
− ∂xtU (∆)

∂nt
and ∂K3

∂nt
= ∂xtU (−s∆)

∂nt
− ∂xtU (∆)

∂nt
, where:

∂xtU(m)

∂nt
≡

Θt(m)−Φ
(α(Θt(m)−(µ+m))−

√
α+β Φ−1(γt)√

β

)
(1−nt)2φ(Φ−1(·))

. (35)

To evaluate this partial derivatives, we can use the optimality condition in the case of symmetri-

cally informed investors, nt = 1. That is, Θ∗t (1,m) is defined as the solution to Ft(Θ
∗
t (1,m),m) = 0,

where uniqueness requires that Ft is strictly decreasing in the first argument. This implies:

Θt(m)−Φ

(
α(Θt(m)− (µ +m))−

√
α +β Φ−1(γt)√

β

)
S 0 i f Θt(m)S Θt(1,m).

Four cases are considered in turn. Case 1: Θ∗t (1,∆) ≤ Θ∗t (nt ,∆) ≤ Θ∗t (1,0) ≤ Θ∗t (nt ,0) ≤

Θ∗t (0,m) ≤ Θ∗t (nt ,−s∆) ≤ Θ∗t (1,−s∆)). Case 2: Θ∗t (1,∆) ≤ Θ∗t (nt ,∆) ≤ Θ∗t (0,m) ≤ Θ∗t (nt ,0) ≤
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Θ∗t (1,0) ≤ Θ∗t (nt ,∆) ≤ Θ∗t (1,−s∆)). Case 3: Θ∗t (nt ,∆) ≤ Θ∗t (1,∆) ≤ Θ∗t (1,0) ≤ Θ∗t (0,m) ≤

Θ∗t (1,−s∆)≤ Θ∗t (nt ,−s∆). Case 4: Θ∗t (nt ,∆)≤ Θ∗t (1,∆)≤ Θ∗t (0,m)≤ Θ∗t (1,0)≤ Θ∗t (1,−s∆)≤

Θ∗t (nt ,−s∆).

Case 1: Using K1 and K3 we obtain ∂K1
∂n > 0 ∀ nt ∈ [0,1) and ∂K3

∂n < 0 ∀ nt ∈ [0,1).

Case 2: Using K2 and K3 we obtain ∂K2
∂n < 0 ∀ nt ∈ [0,1) and ∂K3

∂n < 0 ∀ nt ∈ [0,1).

Case 3: Using K1 and K3 we obtain ∂K1
∂n > 0 ∀ nt ∈ [0,1) and ∂K3

∂n > 0 ∀ nt ∈ [0,1).

Case 4: Using K2 and K3 we obtain ∂K2
∂n < 0 ∀ nt ∈ [0,1) and ∂K3

∂n > 0 ∀ nt ∈ [0,1).

After having found the partial derivative for first two equilibrium conditions (K1,2), we turn to

the other equilibrium condition (L). Here, we can invoke the envelope theorem in order to obtain
∂L
∂n = 0. The idea is the following. Since L represents the indifference condition of an uninformed

investor, the proportion of informed investors enters only indirectly via x∗tU and we can write:

∂L
∂n

=
∂J

∂x∗tU

∂x∗tU
∂n

+

=0︷︸︸︷
∂J
∂n

. (36)

Since x∗tU is the optimal signal threshold of an uninformed investor, it satisfies J(·,x∗tU) = γt . Thus,

we must have ∂J
∂x∗tU

= 0, which corresponds to a first-order optimality condition. (This implicitly

uses the result that the equilibrium is unique.)

To conclude, we have for all cases that |M|> 0 provided that β > β . It shows that |M1|> 0 for

case 1 and |M3| < 0 for case 2, while |M1| < 0 for case 1 and |M3| > 0 for case 2. Furthermore,

for the probability of m = 0, i.e. 1− p−q, sufficiently small we have that |M1|> 0 also for case 2

and |M3| < 0 also for case 1, while |M1| < 0 also for case 2 and |M3| > 0 also for case 1. Hence,

provided that 1− p−q < η and β > β , we find ∀nt ∈ [0,1):

dΘ∗t (nt ,−s∆)

dnt
=


> 0 i f Θ∗t (nt ,−s∆)< Θ∗t (1,−s∆)∧Θ∗t (nt ,∆)> Θ∗t (1,∆)

< 0 i f Θ∗t (nt ,−s∆)> Θ∗t (1,−s∆)∧Θ∗t (nt ,∆)< Θ∗t (1,∆)

= 0 i f Θ∗t (nt ,−s∆) = Θ∗t (1,−s∆)∧Θ∗t (nt ,∆) = Θ∗t (1,∆)
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and ∀nt ∈ [0,1):

dΘ∗t (nt ,∆)

dnt
=


< 0 i f Θ∗t (nt ,−s∆)< Θ∗t (1,−s∆)∧Θ∗t (nt ,∆)> Θ∗t (1,∆)

> 0 i f Θ∗t (nt ,−s∆)> Θ∗t (1,−s∆)∧Θ∗t (nt ,∆)< Θ∗t (1,∆)

= 0 i f Θ∗t (nt ,−s∆) = Θ∗t (1,−s∆)∧Θ∗t (nt ,∆) = Θ∗t (1,∆)

Step 3: In this final step, we combine the results from the previous two steps to show both

boundedness and monotonicity. In particular, we use the result that the derivative of the fundamen-

tal threshold w.r.t. the proportion of informed investors is zero once the boundary is hit. Therefore,

the thresholds in the general case of asymmetrically informed investors are always bounded, which

proves Result (A). Given boundedness, in turn, the derivatives of the fundamental threshold can be

clearly signed, yielding Result (B). That is, given the result from step 1, the second line of each

derivative drops and equations (30) and (31) follow.

We prove that Θ∗t (1,∆)≤Θ∗t (∆),Θ
∗
t (−s∆)≤Θ∗t (1,−s∆) for all nt if α sufficiently small. First,

Θ∗t (1,∆) < Θ∗t (∆) = Θ∗t (0) = Θ∗t (−s∆) < Θ∗t (1,−s∆) if nt = 0, while Θ∗t (1,∆) = Θ∗t (∆) and

Θ∗t (1,−s∆) = Θ∗t (−s∆) if nt = 1. Second, dΘ∗t (∆)
dnt

∣∣
nt=0 < 0, dΘ∗t (−s∆)

dnt

∣∣
nt=0 > 0 and dΘ∗t (∆)

dnt

∣∣
nt=1 =

dΘ∗t (−s∆)
dnt

∣∣
nt=1 = 0. Third, by continuity Θ∗t (1,∆)≤Θ∗t (∆),Θ

∗
t (−s∆)≤Θ∗t (1,−s∆) and dΘ∗t (∆)

dnt

∣∣
nt=0 <

0, dΘ∗t (−s∆)
dnt

∣∣
nt=0 > 0 for small values of nt . Fourth, if for any n̂t ∈ (0,1] Θ∗t (−s∆)↗ Θ∗t (1,−s∆)

when nt→ n̂t , then – for sufficiently small but positive values of α – it has to be true that Θ∗t (∆)↘

Θ∗t (1,∆) when nt → n̂t . This is because of the result in step 1. Fifth, given that the derivatives of

the fundamental thresholds flip when both are outside of the bounds we have Θ∗t (1,∆) =Θ∗t (∆) and

Θ∗t (1,−s∆) = Θ∗t (−s∆) for all nt ≥ n̂t . In conclusion, Θ∗t (1,∆) ≤ Θ∗t (∆),Θ
∗
t (−s∆) ≤ Θ∗t (1,−s∆)

for all nt ∈ [0,1] if α sufficiently small.

Result (C). From the indifference conditions for informed investors:

dx∗tI(m)

dnt
=

dΘ∗t (m)

dnt

(
β

α +β

)−1

. (37)

Therefore, by continuity, there exists a sufficiently small but positive value of α , say α , that

implies the required inequality, taking into account the monotonicity of the fundamental thresh-

olds. The distance between the fundamental thresholds is monotone for any nt > 0, which implies
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d(x∗tI(nt ,−s∆)−x∗tI(nt ,∆))
dnt

≥ 0 ∀ nt ∈ [0,1). Furthermore, x∗tI(nt ,−s∆)− x∗tI(nt ,∆))> 0 ∀ nt ∈ [0,1].

Result (D). We proceed in two steps.

Step 1: We solve the equilibrium condition in equation (26) for n2 = 0 to show that [Θ∗(n2,m)| f =

1]> [Θ∗(n2,m)| f = 0], ∀m ∈ {∆,−s∆,0}, building on the results of Lemmas 1 and 2.

Step 2: We next inspect the equilibrium adjustment of the signal thresholds. First, recall from

Lemma 2 that, for sufficiently high values of β , a higher Θ∗I (0,m) implies a higher x∗U(0,m).

Second, we consider the marginal investor who becomes informed. From equation (22):

Φ
(
[Θ∗I (0,m)| f ]

√
α +β − α(µ +m)+β [x∗I (n2,m)| f ]√

α +β

)
= γ2. (38)

The result in Step 1 implies that inequality (33) follows. This completes the proof.

A.2.3 Information stage in region 2: strategic complementarity in information choices

We next study the value of information about the macro shock. The value of information to an

individual investor is defined as the difference in the expected utility between an informed and an

uninformed investor before costs. These expected utilities are denoted by EUI and EUU , respec-

tively. The expected utility of an informed investor writes:

E[u(di = I,n2)]≡ EUI− c

= −c+ p′

 ∫ Θ∗2(n2,∆)
−∞ bt

∫
xi2≤x∗I (n2,∆)

g(xi2|Θ2)dxi2 f (Θ2|∆)dΘ2

−
∫+∞

Θ∗2(n2,∆)
`2
∫

xi2≤x∗I (n2,∆)
g(xi2|Θ2)dxi2 f (Θ2|∆)dΘ2

+ (39)

q′

 ∫ Θ∗2(n2,−s∆)
−∞ b2

∫
xi2≤x∗I (n2,−s∆) g(xi2|Θ2)dxi2 f (Θ2|− s∆)dΘ2

−
∫+∞

Θ∗2(n2,−s∆) `2
∫

xi2≤x∗I (n2,−s∆) g(xi2|Θ2)dxi2 f (Θ2|− s∆)dΘ2

+

(1− p′−q′)

 ∫ Θ∗2(n2,0)
−∞ b2

∫
xi2≤x∗I (n2,0) g(xi2|Θ2)dxi2 f (Θ2|0)dΘ2

−
∫+∞

Θ∗2(n2,0)
`2
∫

xi2≤x∗I (n2,0) g(xi2|Θ2)dxi2 f (Θ2|0)dΘ2

 ,

By contrast, the expected utility of an uninformed investor, E[u(di =U,n2)]≡ EUU , is constructed

in the same way as EUI with the difference that all signal thresholds have to be replaced by x∗U(n2).

Let v ≡ EUI − EUU be the value of information conditional on the proportion of informed
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investors and the information set in region 2:

v(n2) = p′

 ∫ Θ∗2(n2,∆)
−∞ b2

∫ x∗I (n2,∆)

x∗U (n2)
g(xi2|Θ2)dxi2 f (Θ2|∆)dΘ2

−
∫+∞

Θ∗2(n2,∆)
`2
∫ x∗I (n2,∆)

x∗U (n2)
g(xi2|Θ2)dxi2 f (Θ2|∆)dΘ2

 (40)

+q′

 ∫ Θ∗2(n2,−s∆)
−∞ b2

∫ x∗I (n2,−s∆)

x∗U (n2)
g(xi2|Θ2)dxi2 f (Θ2|− s∆)dΘ2

−
∫+∞

Θ∗2(n2,−s∆) `2
∫ x∗I (n2,−s∆)

x∗U (n2)
g(xi2|Θ2)dxi2 f (Θ2|− s∆)dΘ2


+(1− p′−q′)

 ∫ Θ∗2(n2,0)
−∞ b2

∫ x∗I (n2,0)
x∗U (n2)

g(xi2|Θ2)dxi2 f (Θ2|0)dΘ2

−
∫+∞

Θ∗2(n2,0)
`2
∫ x∗I (n2,0)

x∗U (n2)
g(xi2|Θ2)dxi2 f (Θ2|0)dθ2

 .

The distribution of the fundamental conditional on the realized macro shock, f (Θ2|m), is nor-

mal with mean µ +m and precision α . The distribution of the private signal conditional on the

fundamental, g(x|Θ2), is normal with mean Θ2 and precision β .

To build intuition, suppose that 1− p− q→ 0. Given Θ∗2(1,−s∆) > Θ∗2(1,∆) we have that

x∗I (n2,−s∆)> x∗U(n2)> x∗I (n2,∆) and marginal benefit of increasing x∗I (n2,−s∆) above x∗U(n2) is:

p′
(

b2
∫ Θ∗2(n2,−s∆)
−∞ g(x∗U |Θ2) f (Θ2)dΘ2

−`2
∫+∞

Θ∗2(n2,−s∆) g(x∗U |Θ2) f (Θ2)dΘ2

)
> 0, (41)

while the marginal benefit of increasing x∗I (n2,∆) above x∗U(n2) is:

q′
(

b2
∫ Θ∗2(n2,∆)
−∞ g(x∗U |Θ2) f (Θ2|∆)dΘ2

−`2
∫+∞

Θ∗2(n2,∆)
g(x∗U |Θ2) f (Θ2|∆)dΘ2

)
< 0. (42)

These expressions are best understood in terms of type-I and type-II errors. Each of the expressions

in equations (41) and (42) have two components. The first component in each equation represents

the marginal benefit of attacking when a crisis occurs. Equivalently, this is the marginal loss

from not attacking when a crisis occurs (type-I error). The second component in each equation is

negative and represents the marginal cost of attacking when no crisis occurs (type-II error).

Lemma 3 together with Corollary 3 imply the following. The marginal benefit of increasing

x∗I (n2,−s∆) above x∗U(n2) is positive because the type-I error is relatively more costly than the type-

II error. By contrast, the marginal benefit of decreasing x∗I (n2,∆) below x∗U(n2) is positive because

the type-II error is more costly. In sum, informed investors attack more aggressively upon learning
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that m = −s∆ and less aggressively upon learning m = ∆. The value of information is governed

by the relationship between the type-I and type-II errors. When the signal thresholds of informed

and uninformed investors differ, the value of information is positive because the difference in

thresholds increases in the proportion of informed investors. The result in Lemma 4 follows.

Lemma 4 Strategic complementarity in information choices. If Assumption 1 holds, the value of
information increases in the proportion of informed investors:

dv(n2, f )
dn2

≥ 0, (43)

with strict inequality for small values of n2.

Proof Under the sufficient conditions of Assumption 1 we have that Θ∗2(n2,−s∆)> Θ∗2(n2,∆) and

x∗I (n2,−s∆)> x∗U(n2,0)> x∗I (n2,∆). We will prove that dv(n2, f )
dn2

≥ 0 and v(n2, f )> 0 ∀ n2 ∈ (0,1]∧

f ∈ {0,1}. Suppose that 1−q− p→ 0, then the last term of E[u(di = I,n2)] and E[u(di =U,n2)]

vanishes. Given that Θ∗2(n2,−s∆)> Θ∗2(n2,∆), the first two summands of equation (40) are strictly

positive and, hence, v(n2) > 0 ∀ n2 ∈ (0,1]. Furthermore, given Lemma 3, an increase in the

proportion of informed investors is associated with a (weak) increase in both Θ∗2(n2,−s∆) and

x∗I (n2,−s∆) as well as a (weak) decrease in both Θ∗2(n2,∆) and x∗I (n2,∆). For a given x∗U , an

increase in n2 leads to a relative increase of the (positive) loss component in the first summand

of equation (40) and a relative increase of the benefit component in the second summand. By

continuity and monotonicity, any general equilibrium adjustment of x∗U(n2) with n2 cannot fully

off-set the previous effects. For this reason, the left-hand side of equation (40) increases in n2.

Thus, dv(n2, f )
dn2

≥ 0. By continuity, the results continue to hold if 1− p−q is sufficiently small, that

is if 1− p−q < η . This concludes the proof.

A.2.4 Proof of Proposition 2

We prove the results of the inequalities in (7). Given Assumption 1, the results of Lemma 4 apply

and the first and third inequality follow. The proof of the second inequality consists of four steps.

Step 1: Suppose that 1− p−q→ 0 and evaluate equation (40) at n2 = 1. First, observe that the

first term in brackets is only affected by s through x∗U(1). Second, observe that the second term

in brackets is growing strictly larger in s for a given x∗U(1), as x∗I (1,−s∆) grows in s because of
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the indifference condition of informed investors. Third, if f = 0 observe that x∗U(1)→ x∗I (1,∆) as

s→ ∞. Given that the term in in the second bracket is finite and multiplied by q = p
s , we have that

v(1, f = 0)> v(0, f = 0)→ 0 for s→ ∞, where the inequality is due to the result in Lemma 4.

Step 2: Now, suppose that f = 1 and note that:

lim
µ→∞

[q′| f = 1]
∣∣
s= µ

∆
+ι

= lim
µ→∞

p
s Φ
(√

α1(Θ
∗
1(µ)−µ + s∆)

)
pΦ
(√

α1(Θ
∗
1(µ)−µ−∆)

)
+ p

s Φ
(√

α1(Θ
∗
1(µ)−µ + s∆)

)
+(1− p− p

s )Φ
(√

α1(Θ
∗
1(µ)−µ)

)

|s= µ

∆
+ι

= 1,

where s = µ

∆
+ ι with ι > 0 is necessary to maintain the assumption that the prior is weak after

observing a negative macro shock. Conversely, for f = 0 we have limµ→∞[q′| f = 0]|s= µ

∆
+ι

= 0.

Step 3: Next, notice that for a given µ and s > 1, the event of a negative macro shock is

never considered to be the most probable state of the world provided that s is sufficiently high.

This is because q′ < p′ holds for finite µ if s is sufficiently high: s ≥ Pr{ f |m = −s∆}(Pr{ f |m =

∆})−1,∀ f ∈ {0,1}. Moreover, given step 2 we have that [q′| f = 1] >> 0 for µ sufficiently high

such that [p′| f = 1] > [q′| f = 1] > 0, provided s is sufficiently high as well; and in the limit

approaching ∞ with a higher speed of convergence. Instead, [q′| f = 0] is arbitrarily small.

Step 4: Given the comparative statics in step 3, we have for sufficiently high values of s and

µ that the there is a strictly positive probability weight on the first and second bracket of v(1,1),

while all the probability weight is concentrated on the first bracket of v(1,0). In addition, the

expression in the first bracket of v(1,1) is strictly larger than the expression in the first bracket of

v(1,0) since x∗U 9 x∗I (1,∆) and x∗U 9 x∗I (1,−s∆) in the former case, while x∗U → x∗I (1,∆) in the

latter case. In fact, both expressions approach zero for µ→∞, but the expression in the first bracket

of v(1,0) approaches zero with a higher speed of convergence. Conversely, the expression in the

second bracket of v(1,1) is potentially smaller than the expression in the second bracket of v(1,0).

Both terms approach zero with the same speed of convergence for µ → ∞. The pre-multiplied
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conditional probabilities [q′| f = 1] and [q′| f = 0] make the difference, where we have:

lim
µ→∞

[q′| f = 0]
∣∣
s= µ

∆
+ι

= lim
µ→∞

p
s

(
1−Φ

(√
α1(Θ

∗
1(µ)−µ + s∆)

))
1− pΦ

(√
α1(Θ

∗
1(µ)−µ−∆)

)
− p

s Φ
(√

α1(Θ
∗
1(µ)−µ + s∆)

)
−(1− p− p

s )Φ
(√

α1(Θ
∗
1(µ)−µ)

)

|s= µ

∆
+ι

= 0.

In the limit [q′| f = 1]/[q′| f = 0]→∞ for µ→∞ and s sufficiently high such that 0< [q′| f = 1]< 1.

Taken together, v(1,1)− v(1,0) > 0 in the limit since the other terms in brackets approach zero

with the same speed of convergence. By continuity, the result also holds for large, but finite, values

of s and µ , as well as for sufficiently small 1− p−q. Hence, v(n2 = 0, f = 1)> v(n2 = 1, f = 0)

and inequality (7) follows provided that Assumption 1 holds and s and µ are sufficiently high.

A.2.5 Proof of Proposition 1

The proof builds on the analysis of the coordination and information stages in region 2. Corollary 3

establishes the existence of unique attack rules in region 2. Proposition 2 establishes the existence

of a nonempty intermediate range of information costs c ∈ (c,c) with c ≡ v(1,0) and c ≡ v(0,1),

such that all investors choose to acquire information if and only if a crisis occurs in region 1. The

result in Proposition 1 follows.

A.3 Proof of Proposition 3

The proof consists of four steps. First, suppose that s→ ∞. Not observing a crisis in region

1 implies that q′
q → 0 as q′ goes to zero faster than q. To see this, observe that Pr{ f = 0|m =

−s∆} → 0 if s→ ∞, since a Θ2 drawn from a distribution with a highly negative mean, µ − s∆,

is increasingly unlikely to have a sufficiently high realization such that f = 0 occurs. At the same

time, p′
p 9 0 and 1−p′−q′

1−p−q 9 0 if s→ ∞ and f = 0.

Second, the right-hand side of inequality (8) has a fundamental threshold that is lower than the

fundamental threshold on the left-hand side. To see this, we again use the comparative static result

underlying Lemma 2. Observing f = 0 implies that the second summand of J in equation (21)

goes to zero if s→ ∞. Hence, [Θ∗2(n2 = 0,m)| f = 0]< [Θ∗2(n2 = 1,m = 0)| f = 1].
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Third, given s→ ∞, the Θ’s on the right-hand side of inequality (8) are drawn from equally

favorable or, with a positive probability ( p′
p 9 0) that is away from zero, from a more favorable

distribution if f = 0. Thus, the likelihood of a crisis in region 2 is lower if f = 0 and s→ ∞.

Fourth, by continuity, the result can be generalized to hold for a sufficiently high, but finite,

value of s, say s > s. This concludes the proof.

A.4 Proof of Proposition 4

We define the differential ex-ante probability of regime change, D, between when investors acquire

information after observing a crisis in region 1, n2 = 1, and when investors do not, n2 = 0 (e.g.,

because of a high c). Recall that Θ∗2(0,m) = Θ∗U , ∀m ∈ {∆,−s∆,0}, which solves equation (21).

Importantly, investors do not acquire information in both scenarios after not observing a crisis in

region 1, f = 0, which helps to simplify the expression. We also assume 1− p−q = 0. In sum:

D ≡ (Pr{m = ∆| f = 1}Pr{Θ2 < Θ
∗
2(1,∆)}+Pr{m =−s∆| f = 1}Pr{Θ2 < Θ

∗
2(1,−s∆)})

−(Pr{m = ∆| f = 1}Pr{Θ2 < Θ
∗
2(0,∆)| f = 1}+Pr{m =−s∆| f = 1}Pr{Θ2 < Θ

∗
2(0,−s∆)| f = 1})

⇔ D(Pr{Θ1 < Θ
∗
1|m = ∆}+Pr{Θ1 < Θ

∗
1|m =−s∆}/s)≡ D′ (44)

= (Pr{Θ2 < Θ
∗
2(1,∆)}−Pr{Θ2 < Θ

∗
2(0,∆)| f = 1})Pr{Θ1 < Θ

∗
1|m = ∆}

+(Pr{Θ2 < Θ
∗
2(1,−s∆)}−Pr{Θ2 < Θ

∗
2(0,−s∆)| f = 1})Pr{Θ1 < Θ

∗
1|m =−s∆}/s.

It is instructive to first inspect the case where α1→ 0 and α2 > 0, which yields Pr{Θ1 < Θ∗1|m =

∆}= Pr{Θ1 < Θ∗1|m =−s∆}= 1/2 and [Θ∗2(0,m)| f = 1] = 1/2 so that:

2D′ = Pr{Θ2 < Θ∗2(1,∆)}−Pr{Θ2 <
1
2 |m = ∆}+ Pr{Θ2<Θ∗2(1,−s∆)}−Pr{Θ2<

1
2 |m=−s∆}

s .

We can see that D′ = D = 0 if µ = γ = 1
2 and s = 1 due to symmetry and it can be shown that

dD′
dα1

∣∣
α1=0 < 0, meaning that D < 0 if α1 > 0. To see this, we take derivatives:

dD′

dα1
= −φ

(
Θ∗2(0,∆)−

(1
2 +∆

)
1/
√

α2

)
√

α2
dΘ∗2(0,∆)

dα1
Φ

(
−∆

1/
√

α1

)

−φ

(
Θ∗2(0,∆)−

(1
2 −∆

)
1/
√

α2

)
√

α2
dΘ∗2(0,−∆)

dα1
Φ

(
∆

1/
√

α1

)
,
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where we used that dΘ∗2(1,∆)/dα1 = 0 and dΘ∗1/dα1 = 0 for µ = γ = 1
2 , as well as Θ∗1 = 1/2.

Note that Θ∗2(0,m)> 1/2 if f = 1 so that dΘ∗2(0,m)/dα1|α1=0 > 0, because dq̂′/dα1|α1=0 > 0.

Conversely, when inspecting the case of α2→ 0 and α1 > 0 we have the opposite result with

D > 0 for sufficiently small α2. For α2 = 0 we have D′ = D = 0, because the expression in

brackets in equation (44) are zero. For α2 > 0 the first bracket in equation (44) is negative and

the second bracket is positive. If µ = γ = 1
2 and s = 1 as before, we have that D′′ ≡ Pr{Θ2 <

Θ∗2(1,−∆)}−Pr{Θ2 < Θ∗2(0,−∆)| f = 1}−Pr{Θ2 < Θ∗2(1,∆)}+Pr{Θ2 < Θ∗2(0,∆)| f = 1} < 0

so that D > 0 can only occur if Pr{Θ1 < Θ∗1|m =−∆}−Pr{Θ1 < Θ∗1|m = ∆}> 0 is large relative

to |Pr{Θ2 < Θ∗2(1,−∆)}−Pr{Θ2 < Θ∗2(0,−∆)| f = 1}|. This is the guaranteed for α2→ 0 since:

lim
α2→0

Pr{Θ2 < Θ∗2(1,∆)| f = 1}−Pr{Θ2 < Θ∗2(0,∆)}
Pr{Θ2 < Θ∗2(1,−∆)}−Pr{Θ2 < Θ∗2(0,−∆)| f = 1}

= lim
α2→0

∫ [Θ∗2(0,∆)| f=1]
Θ∗2(1,∆)

φ

(
Θ2−(µ+∆)

1/
√

α2

)
dΘ2∫ Θ∗2(1,−∆)

[Θ∗2(0,−∆)| f=1]φ
(

Θ2−(µ−∆)
1/
√

α2

)
dΘ2

= 1.

In conclusion, we show by continuity that there exists a α2 > 0 such that, for all α2 < α2, the

ex-ante probability of regime change is higher for c ∈ (c,c) than for c > c (in the special case of

µ = γ = p = 1
2 and s = 1). This concludes the proof.

A.5 Proof of Proposition 5

We analyze the role of transparency for the case of µ = γ = 1
2 and 1− p−q = 0. First, we establish

some results that will be useful. It can be shown that d f (Θ∗2|m)
dα2

< 0,∀m ∈ {∆,0,−s∆}. Moreover,
dΘ∗2(m)

dα2
< 0 and dx∗I (m)

dα2
< 0 for m = ∆, as well as dΘ∗2(m)

dα2
> 0 and dx∗I (m)

dα2
> 0 for m =−s∆.

Next, we analyze the derivative of the value of information with respect to α2. Observe that p′

and q′ only depend on α1 and not on α2. For 1− p−q = 0 we can focus on the derivatives of the
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first and second summand of equation (40) to describe the incentives to become informed:

dv(1, f )
dα2

= p′( f )


−
∫ Θ∗2(1,∆)
−∞

dx∗U (1, f )
dα2

g(x∗U |Θ2) f (Θ2|∆)b2dΘ2

+
∫ Θ∗2(1,∆)
−∞

dx∗I (1,∆)
dα2

g(x∗I |Θ2) f (Θ2|∆)b2dΘ2

+
∫+∞

Θ∗2(1,∆)
dx∗U (1, f )

dα2
g(x∗U |Θ2) f (Θ2|∆)`2dΘ2

−
∫+∞

Θ∗2(1,∆)
dx∗I (1,∆)

dα2
g(x∗I |Θ2) f (Θ2|∆)`2dΘ2


+ p′( f )

 −dΘ∗2(1,∆)
dα2

∫ x∗U (1, f )
x∗I (1,∆)

g(xi2|Θ∗2)dxi2 f (Θ∗2|∆)b2

−dΘ∗2(1,∆)
dα2

∫ x∗U (1, f )
x∗I (1,∆)

g(xi2|Θ∗2)dxi2 f (Θ∗2|∆)`2


+ p′( f )

 −∫ Θ∗2(1,∆)
−∞

∫ x∗U (1, f )
x∗I (1,∆)

g(xi2|Θ2)dxi2
d f (Θ2|∆)

dα2
b2

+
∫+∞

Θ∗2(1,∆)
∫ x∗U (1, f )

x∗I (1,∆)
g(xi2|Θ2)dxi2

d f (Θ2|∆)
dα2

`2



+ q′( f )


−
∫ Θ∗2(1,−s∆)
−∞

dx∗U (1, f )
dα2

g(x∗U |Θ2) f (Θ2|− s∆)b2dΘ2

+
∫ Θ∗2(1,−s∆)
−∞

dx∗I (1,−s∆)
dα2

g(x∗I |Θ2) f (Θ2|− s∆)b2dΘ2

+
∫+∞

Θ∗2(1,−s∆)
dx∗U (1, f )

dα2
g(x∗U |Θ2) f (Θ2|− s∆)`2dΘ2

−
∫+∞

Θ∗2(1,−s∆)
dx∗I (1,−s∆)

dα2
g(x∗I |Θ2) f (Θ2|− s∆)`2dΘ2


+ q′( f )

 −dΘ∗2(1,−s∆)
dα2

∫ x∗U (1, f )
x∗I (1,−s∆)

g(xi2|Θ∗2)dxi2 f (Θ∗2|− s∆)b2

−dΘ∗2(1,−s∆)
dα2

∫ x∗U (1, f )
x∗I (1,−s∆)

g(xi2|Θ∗2)dxi2 f (Θ∗2|− s∆)`2


+ q′( f )

 −∫ Θ∗2(1,−s∆)
−∞

∫ x∗U (1, f )
x∗I (1,−s∆)

g(xi2|Θ2)dxi2
d f (Θ2|−s∆)

dα2
b2dΘ2

+
∫+∞

Θ∗2(1,−s∆)

∫ x∗U (1, f )
x∗I (1,−s∆)

g(xi2|Θ2)dxi2
d f (Θ2|−s∆)

dα2
`2dΘ2

 .

For the special case with µ = γ = 1
2 and s= 1 the derivative simplifies, because x∗I (1,∆)

dα2
=−x∗I (1,−∆)

dα2
,

57



dΘ∗2(1,∆)
dα2

=−dΘ∗2(1,−∆)
dα2

, 1
2 −Θ∗2(1,∆) = Θ∗2(1,−∆)− 1

2 :

dv(1, f )
dα2

∣∣
µ=γ= 1

2 ,s=1 ∝
dx∗I (1,∆)

dα2

( ∫ Θ∗2(1,∆)
−∞ g(x∗I |Θ2) f (Θ2|∆)dΘ2−

∫+∞

Θ∗2(1,∆)
g(x∗I |Θ2) f (Θ2|∆)dΘ2

)
− p′( f )

dΘ∗2(1,∆)
dα2

 ∫ x∗U (1, f )
x∗I (1,∆)

g(xi2|Θ∗2)dxi2 f (Θ2|∆)

+
∫ x∗U (1, f )

x∗I (1,∆)
g(xi2|Θ∗2)dxi2 f (Θ∗2|∆)


− q′( f )

dΘ∗2(1,−∆)

dα2

 ∫ x∗U (1, f )
x∗I (1,−∆)

g(xi2|Θ∗2)dxi2 f (Θ∗2|−∆)

+
∫ x∗U (1, f )

x∗I (1,−∆)
g(xi2|Θ∗2)dxi2 f (Θ∗2|−∆)


+ p′( f )

dx∗U(1, f )
dα2

( ∫+∞

Θ∗2(1,∆)
g(x∗U |Θ2) f (Θ2|∆)dΘ2−

∫ Θ∗2(1,∆)
−∞ g(x∗U |Θ2) f (Θ2|∆)dΘ2

)
+ q′( f )

dx∗U(1, f )
dα2

 ∫+∞

Θ∗2(1,−∆) g(x∗U |Θ2) f (Θ2|−∆)dΘ2

−
∫ Θ∗2(1,−∆)
−∞ g(x∗U |Θ2) f (Θ2|−∆)dΘ2


+ p′( f )

 −∫ Θ∗2(1,∆)
−∞

∫ x∗U (1, f )
x∗I (1,∆)

g(xi2|Θ2)dxi2
−α2y(Θ2)

2 f (Θ2|∆)dΘ2

+
∫+∞

Θ∗2(1,∆)
∫ x∗U (1, f )

x∗I (1,∆)
g(xi2|Θ2)dxi2

−α2y(Θ2)
2 f (Θ2|∆)dΘ2


+ q′( f )

 −∫ Θ∗2(1,−∆)
−∞

∫ x∗U (1, f )
x∗I (1,−∆)

g(xi2|Θ2)dxi2
−α2y(Θ2)

2 f (Θ2|−∆)dΘ2

+
∫+∞

Θ∗2(1,−∆)

∫ x∗U (1, f )
x∗I (1,−∆)

g(xi2|Θ2)dxi2
−α2y(Θ2)

2 f (Θ2|−∆)dΘ2

 ,

where y(Θ2) ≡ Θ2− 1
2 +∆. We can show that the first summand is zero. To see this, we rewrite

the integrand and evaluate it at x∗(1,∆):

∫
Θ∗2(1,∆)

−∞

√
α2β

2π
e−

1
2 u(Θ2)dΘ2−

∫ +∞

Θ∗2(1,∆)

√
α2β

2π
e−

1
2 u(Θ2)dΘ2, (45)

where u(Θ2) ≡ [β (Θ∗2(1,∆)+
1√
β

Φ−1 (Θ∗2(1,∆))−Θ2)
2 +α2(Θ2− 1

2 −∆)2]. From the equilib-

rium condition we have 1√
β

Φ−1 (Θ∗2(1,∆)) =
α2
β

y(Θ∗2(1,∆)). Moreover, matching fundamental

realizations that are equidistant from the fundamental equilibrium threshold we find that:

d
(

e−
1
2 u(Θ∗2−ε)− e−

1
2 u(Θ∗2+ε)

)
dε

= −1
2

du(Θ∗2− ε)

dε
e−

1
2 u(Θ∗2−ε)+

1
2

du(Θ∗2 + ε)

dε
e−

1
2 u(Θ∗2+ε)

= −1
2
[2β (

α2

β
y(Θ∗2)+ ε)−2α2(y(Θ∗2)− ε)]e−

1
2 u(Θ∗2−ε)

+
1
2
[−2β (

α2

β
y(Θ∗2)− ε)+2α2(y(Θ∗2)+ ε)]e−

1
2 u(Θ∗2+ε)

= (α2 +β )ε
(
−e−

1
2 u(Θ∗2−ε)+ e−

1
2 u(Θ∗2+ε)

)
= 0,∀ε ≥ 0.
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Next, the second and third summands are strictly positive since x∗I (1,−s∆)> x∗U(1, f )> x∗I (1,∆).

For the remaining summands we consider the limit case α1 → 0, which vastly simplifies the

analysis. In the limit case region 1 becomes irrelevant and p′( f ) = q′( f ) = p. Summands four and

five are zero since x∗U(1, f ) = 1
2 ,∀ f ∈ {0,1}. Finally, summands six and seven have an ambiguous

sign and we know that d f (Θ2|∆)/dα2 = d f (Θ2|−∆)/dα2 < 0 for µ = γ = 1
2 and s = 1. For he

limit α1→ 0 we can rewrite summands six and seven as:

α2
2

 ∫ Θ∗2(1,∆)
−∞

(∫ Θ∗2(1,∆)
x∗I (1,∆)

g(xi2|Θ2)dxi2dΘ2 +
∫ 1/2

Θ∗2(1,∆)
g(xi2|Θ2)dxi2

)
y(Θ2) f (Θ2|∆)dΘ2

−
∫+∞

Θ∗2(1,∆)

(∫ Θ∗2(1,∆)
x∗I (1,∆)

g(xi2|Θ2)dxi2 +
∫ 1/2

Θ∗2(1,∆)
g(xi2|Θ2)dxi2

)
y(Θ2) f (Θ2|∆)dΘ2

 (46)

=
α

3/2
2 β 1/2

4π



∫ Θ∗2(1,∆)
−∞


∫ 1/2

Θ∗2(1,∆)
e−

1
2 [β (xi2−Θ2)

2+α2(Θ2− 1
2−∆)2]dxi2

+
∫ Θ∗2(1,∆)

Θ∗2(1,∆)+
α2
β
(Θ∗2(1,∆)−

1
2−∆)

e−
1
2 [β (xi2−Θ2)

2+α2(Θ2− 1
2−∆)2]dxi2

y(Θ2)dΘ2

−
∫+∞

Θ∗2(1,∆)


∫ 1/2

Θ∗2(1,∆)
e−

1
2 [β (xi2−Θ2)

2+α2(Θ2− 1
2−∆)2]dxi2

+
∫ Θ∗2(1,∆)

Θ∗2(1,∆)+
α2
β
(Θ∗2(1,∆)−

1
2−∆)

e−
1
2 [β (xi2−Θ2)

2+α2(Θ2− 1
2−∆)2]dxi2

y(Θ2)dΘ2


.

We first derive sufficient conditions such that a combination of the first and third summands

in the last expression of equation (46) is positive. We again match equidistant fundamental re-

alizations and evaluate at the signal xi2 = Θ∗2(1,∆). If the resulting expression is positive at

xi2 = Θ∗2(1,∆), then also the combination of the first and third summands must be positive:

I(ε)= I1(ε)+I2(ε)≡ (Θ∗2−ε− 1
2
−∆)e−

1
2 [βε2+α2(Θ

∗
2−ε− 1

2−∆)2]−(Θ∗2+ε− 1
2
−∆)e−

1
2 [βε2+α2(Θ

∗
2+ε− 1

2−∆)2].

We find that
∫+∞

0 I(ε)dε > 0 for sufficiently high values of ∆. First, I1(0) = I2(0) = 0. Taking

derivatives leads to:

d
(

I1(ε)

e−
1
2 βε2

)
dε

= (1−α2(Θ
∗
2− ε− 1

2
−∆)2)e−

α2
2 (Θ∗2−ε− 1

2−∆)2

d
(

I2(ε)

e−
1
2 βε2

)
dε

= (α2(Θ
∗
2 + ε− 1

2
−∆)2−1)e−

α2
2 (Θ∗2+ε− 1

2−∆)2
,

For sufficiently high ∆ we have that dI1(ε)/dε < 0, while dI2(ε)/dε > 0 for small and high ε .

Only for the intermedate range ε ∈
(

ε̂−
√

1/α2, ε̂ +
√

1/α2

)
we have that I2(ε)< 0, where ε̂ ≡
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1
2 +∆−Θ∗2(1,∆). Note that

∫ ε̂−
√

1/α2
0 I(ε)dε > 0 and

∫+∞

ε̂+
√

1/α2
I(ε)dε > 0 if ∆ is high, while∫ ε̂+

√
1/α2

ε̂−
√

1/α2
I(ε)dε < 0. It can be shown that

∫+∞

0 I2(ε)dε > 0 and
∫+∞

0 I2(ε)dε >−
∫+∞

0 I1(ε)dε for

sufficiently high ∆ and small α2. To see this, observe that:

−
∫ √1/α2

0
e−

α2
2 ε ′2dε

′+
∫ +∞

√
1/α2

e−
α2
2 ε ′2dε

′ > 0 ⇐ α2 <

(√
π

2
er f
(

1√
2

))−2

≈ 0.86. (47)

Finally, we consider the combination of the second and fourth summands in the last expression

of equation (46). Following a similar arugment as before, we can show that it is positive for

sufficiently high ∆. To see this, we again match equidistant fundamental realizations and evaluate

at the signal xi2 = Θ∗2(1,∆)+
α2
β

(
Θ∗2(1,∆)−

1
2 −∆

)
:

I(ε) = I3(ε)+ I4(ε) ≡ (Θ∗2− ε− 1
2
−∆)e−

1
2 [β
(

α2
β
(Θ∗2−

1
2−∆)+ε

)2
+α2(Θ

∗
2−ε− 1

2−∆)2]

− (Θ∗2 + ε− 1
2
−∆)e−

1
2 [β
(

α2
β
(Θ∗2−

1
2−∆)−ε

)2
+α2(Θ

∗
2+ε− 1

2−∆)2]

dI3(ε)

dε
= −(1+(α2 +β )ε(Θ∗2− ε− 1

2
−∆))e−

1
2 [β
(

α2
β
(Θ∗2−

1
2−∆)+ε

)2
+α2(Θ

∗
2−ε− 1

2−∆)2]

dI4(ε)

dε
= −(1− (α2 +β )ε(Θ∗2 + ε− 1

2
−∆))e−

1
2 [β
(

α2
β
(Θ∗2−

1
2−∆)−ε

)2
+α2(Θ

∗
2+ε− 1

2−∆)2]
.

We have that I(0) = 0 and I3(ε) < 0,∀ε > 0. Moreover, I3(ε) > 0 for small values of ε and

I3(ε) < 0 for large values of ε . Similar to before, we can show that also
∫+∞

0 (I3 + I4)dε > 0 for

sufficiently high ∆ and small α2.

Taken together, dv(1, f )
dα2

> 0 for the special case with µ = γ = 1
2 , s = 1, 1− p− q = 0 and

sufficiently high ∆ and sufficiently small α1 and α2.

A.6 Proof of Proposition 6

The proof consists of two steps that deal with the impact on the fundamental thresholds and con-

ditional distribution. First, we consider the fundamental thresholds in regions 2 after observing

the outcome in region 1. From Lemma 2, we have that f = 1 coincides with p′ < p, q′ > q, and
p′

1−q′ <
p

1−q , while the reverse inequalities hold if f = 0. Hence, observing f = 1 induces a lower

weight on the first summand and a higher weight on the second summand of J in equation (21),
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while the effect of the third summand is ambiguous. Still, from q′
1−p′ >

q
1−p it follows that the rela-

tive increase of the weight on the second summand must be higher when compared to the potential

increase of the weight on the third summand.

Hence, using the comparative static result underlying Lemma 2, the Θ∗2(0,m) that solves the

version of equation (21) for region 2 and n2 = 0 must be higher after observing a crisis in region

1 due to more aggressive attacks after unfavorable public information. A higher fundamental

threshold is, ceteris paribus, associated with a higher conditional probability of a crisis in region 2.

Second, the distribution of the unobserved macro shock is updated after observing the outcome

in region 1. Specially, the distribution of the region 2 fundamental conditional on a crisis in region

1 ( f = 1) is less favorable than the distribution of the fundamental of region 2 conditional on no

crisis in region 1 ( f = 0). The second effect strengthens the first effect. This concludes the proof.

A.7 Figure 2: Comparative statics

We examine how the differential value of information changes in the parameter s, d[v(1,1)−v(1,0)]
ds .

We consider the special case of Figures 1-4, where µ = γ = 1
2 . To further simplify the analysis, we
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set s = 1 and 1− p−q = 0. It follows that:

d[v(1,1)− v(1,0)]
ds

= p′(1)

 −∫ Θ∗2(1,∆)
−∞

dx∗U (1,1)
ds

g(x∗U |Θ2) f (Θ2|∆)
2 dΘ2

+
∫+∞

Θ∗2(1,∆)
dx∗U (1,1)

ds
g(x∗U |Θ2) f (Θ2|∆)

2 dΘ2


+ q′(1)

 −∫ Θ∗2(1,−s∆)
−∞

dx∗U (1,1)
ds

g(x∗U |Θ2) f (Θ2|−s∆)
2 dΘ2

+
∫+∞

Θ∗2(1,−s∆)
dx∗U (1,1)

ds
g(x∗U |Θ2) f (Θ2|−s∆)

2 dΘ2


− p′(0)

 −∫ Θ∗2(1,∆)
−∞

dx∗U (1,0)
ds

g(x∗U |Θ2) f (Θ2|∆)
2 dΘ2

+
∫+∞

Θ∗2(1,∆)
dx∗U (1,0)

ds
g(x∗U |Θ2) f (Θ2|∆)

2 dΘ2


− q′(0)

 −∫ Θ∗2(1,−s∆)
−∞

dx∗U (1,0)
ds

g(x∗U |Θ2) f (Θ2|−s∆)
2 dΘ2

+
∫+∞

Θ∗2(1,−s∆)
dx∗U (1,0)

ds
g(x∗U |Θ2) f (Θ2|−s∆)

2 dΘ2


+ q′(1)

 ∫ Θ∗2(1,−s∆)
−∞

dx∗I (1,−s∆)
ds g(x∗I |Θ2)

f (Θ2|−s∆)
2 dΘ2

−
∫+∞

Θ∗2(1,−s∆)
dx∗I (1,−s∆)

ds g(x∗I |Θ2)
f (Θ2|−s∆)

2 dΘ2


− q′(0)

 ∫ Θ∗2(1,−s∆)
−∞

dx∗I (1,−s∆)
ds g(x∗I |Θ2)

f (Θ2|−s∆)
2 dΘ2

−
∫+∞

Θ∗2(1,−s∆)
dx∗I (1,−s∆)

ds g(x∗I |Θ2)
f (Θ2|−s∆)

2 dΘ2


+ q′(1)

(
dΘ∗2(1,−s∆)

ds
∫ x∗I (1,−s∆)

x∗U (1,1) g(xi2|Θ∗2)dxi2 f (Θ∗2|− s∆)
)

− q′(0)
(

dΘ∗2(1,−s∆)
ds

∫ x∗I (1,−s∆)

x∗U (1,0) g(xi2|Θ∗2)dxi2 f (Θ∗2|− s∆)
)

+ q′(1)

 ∫ Θ∗2(1,−s∆)
−∞

∫ x∗I (1,−s∆)

x∗U (1,1)
g(xi2|Θ2)dxi2

2
d f (Θ2|−s∆)

ds dΘ2

−
∫+∞

Θ∗2(1,−s∆)

∫ x∗I (1,−s∆)

x∗U (1,1)
g(xi2|Θ2)dxi2

2
d f (Θ2|−s∆)

ds dΘ2


− q′(0)

 ∫ Θ∗2(1,−s∆)
−∞

∫ x∗I (1,−s∆)

x∗U (1,0)
g(xi2|Θ2)dxi2

2
d f (Θ2|−s∆)

ds dΘ2

−
∫+∞

Θ∗2(1,−s∆)

∫ x∗I (1,−s∆)

x∗U (1,0)
g(xi2|Θ2)dxi2

2
d f (Θ2|−s∆)

ds dΘ2

 , (48)

where we used that, for µ = 1
2 and s= 1, we have 1

2−Θ∗2(1,∆)=Θ∗2(1,−s∆)− 1
2 and 1

2−x∗I (1,∆)=

x∗I (1,−s∆)− 1
2 . Moreover, Θ∗2(1,0) = Θ1 =

1
2 , d p′( f=0)

ds = dq′( f=1)
ds , d p′( f=1)

ds = dq′( f=0)
ds and x∗U(n =

1, f = 1)− 1
2 = 1

2 − x∗U(n = 1, f = 0) due to symmetry in the special case. Finally, together with

1− p−q = 0, we have that d p′( f )
ds =−dq′( f )

ds ,∀ f ∈ {0,1}.

Note that summands 5-6 of equation (48) are jointly positive since the expressions inside the

brackets are positive, q′(1) > q′(0) and dx∗I (1,−s∆)
ds > 0. Given that dΘ∗1(1,−s∆)

ds > 0, summands 7-8
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are jointly positive if:

q′(1)
q(0)

>

∫ x∗I (1,−s∆)

x∗U (1,0) g(xi2|Θ∗2)dxi2∫ x∗I (1,−s∆)

x∗U (1,1) g(xi2|Θ∗2)dxi2

,

which holds for sufficiently high β . To see this, observe that a higher β shifts more mass to

the upper signal threshold because x∗I (1,−s∆) and Θ∗2(1,−s∆) approach each other faster than

Θ∗2(1,−s∆) and x∗U(1, f ) if β increases. Formally, x∗I (1,−s∆)−Θ∗2(1,−s∆)= 1√
β

Φ−1 (Θ∗2(1,−s∆))<

Θ∗2(1,−s∆)−Θ∗2(0, f )− 1√
β

Φ−1 (Θ∗2(0, f )) for sufficiently high β .

Similarly, summands 9-10 are jointly positive if:

q′(1)

 −∫ Θ∗2(1,−s∆)
−∞

∫ x∗I (1,−s∆)

x∗U (1,1) g(xi2|Θ2)dxi2 f (Θ2|− s∆)(Θ2− 1
2 + s∆)dΘ2

+
∫+∞

Θ∗2(1,−s∆)

∫ x∗I (1,−s∆)

x∗U (1,1) g(xi2|Θ2)dxi2 f (Θ2|− s∆)(Θ2− 1
2 + s∆)dΘ2


− q′(0)

 −∫ Θ∗2(1,−s∆)
−∞

∫ x∗I (1,−s∆)

x∗U (1,0) g(xi2|Θ2)dxi2 f (Θ2|− s∆)(Θ2− 1
2 + s∆)dΘ2

+
∫+∞

Θ∗2(1,−s∆)

∫ x∗I (1,−s∆)

x∗U (1,0) g(xi2|Θ2)dxi2 f (Θ2|− s∆)(Θ2− 1
2 + s∆)dΘ2

> 0.

Notably, the second summands in both brackets are positive and the first summands are negative

for values Θ2 ∈
(1

2 − s∆,Θ∗2(1,−s∆)
)

and positive for Θ2 < 1
2 − s∆. For a given ∆ we have that

the probability weight in the positive regions dominates if α sufficiently small, which makes the

expressions in the brackets positive. Given that, we can use an analog argument to show that the

inequality holds for sufficiently high β .

Finally, we derive conditions such that also summands 1-4 of equation (48) are jointly positive.

Observe that for large β the second summands of the first bracket and the first summand of the

fourth bracket dominate. Moreover, for large ∆ the second summand of the second bracket, as well

as the first summand of the third bracket dominate. In addition, a large ∆ implies that x∗U(1,1)→

x∗I (1,−s∆) and x∗U(1,0)→ x∗I (1,∆) so that dx∗U (1,1)
ds > 0 and dx∗U (1,0)

ds → 0. Taken together, summands

1-4 are jointly positive for sufficiently high β and ∆.

In conclusion we have shown that d[v(1,1)−v(1,0)]
ds > 0

∣∣
s=1 for the special case µ = γ = p = 1

2 as

in Figure 2 and under the sufficient condition that β and ∆ are high.
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A.8 Figure 3: Comparative statics

We examine how E[m| f = 1] = Pr{m = ∆| f = 1}∆− Pr{m = −s∆| f = 1}s∆ changes with µ

and with s, using the results from Lemma 2. This requires to analyze d Pr{m| f=1}
dµ

and d Pr{m| f=1}
ds ,

∀m ∈ {∆,−s∆}. We proceed in three steps.

Step 1: Taking derivatives with respect to µ leads to:

d Pr{m = ∆| f = 1}
dµ

=
p

Γ2( f = 1)
d Pr{ f = 1|m = ∆}

dµ
− pPr{ f = 1|m = ∆}

Γ2( f = 1)2
dΓ2( f = 1)

dµ
, (49)

where Γ2( f ) = pPr{ f |m = ∆}+qPr{ f |m =−s∆}+(1− p−q)Pr{ f |m = 0}. Based on the results

from Lemma 1 we have that d Pr{ f=1|m=∆}
dµ

=
d Pr{Θ1<Θ∗1|m=∆}

dµ
< 0 and dΓ2( f=1)

dµ
< 0, which gives us

an unclear overall effect.

Step 2: We next prove that the first summand of equation (49) outweighs the second summand.

Observe that Pr{ f=1|m=∆}
Γ2( f=1) < 1 and d Pr{ f=1|m=−s∆}/dµ

d Pr{ f=1|m=∆}/dµ
< 1 since:

dΦ(
√

α[Θ∗1− (µ− s∆)])/dµ

dΦ(
√

α[Θ∗1− (µ +∆)])/dµ
=

φ(
√

α[Θ∗1− (µ− s∆)])
√

α(
dΘ∗1
dµ
−1)

φ(
√

α[Θ∗1− (µ +∆)])
√

α(
dΘ∗1
dµ
−1)

< 1,

where a sufficiently high s as assured by Assumption 1 implies that φ(
√

α[Θ∗1− (µ − s∆)]) <

φ(
√

α[Θ∗1− (µ +∆)]). As a result:

− p
Γ2( f = 1)

d Pr{ f = 1|m = ∆}
dµ

>− pPr{ f = 1|m = ∆}
Γ2( f = 1)2

dΓ2( f = 1)
dµ

= − p
Γ2( f = 1)

d Pr{ f = 1|m = ∆}
dµ


pPr{ f=1|m=∆}

Γ2( f=1)

+qPr{ f=1|m=∆}
Γ2( f=1)

d Pr{ f=1|m=−s∆}/dµ

d Pr{ f=1|m=∆}/dµ

+(1− p−q)Pr{ f=1|m=∆}
Γ2( f=1)

d Pr{ f=1|m=0}/dµ

d Pr{ f=1|m=∆}/dµ

 ,

provided 1− p−q is sufficiently small, which is one of the conditions in Ass. 1. Hence, d Pr{m=∆| f=1}
dµ

<

0. Following the same steps, d Pr{m=−s∆| f=1}
dµ

> 0. In contrast , the signs of d Pr{m=∆| f=0}
dµ

and
d Pr{m=−s∆| f=0}

dµ
are unclear since Pr{ f=0|m=∆}

Γ2( f=0) > 1. To conclude, we can show that dE[m| f=1]
dµ

< 0

under sufficient conditions akin to the ones provided in Assumption 1.
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Step 3: Taking derivatives with respect to s leads to:

dE[m| f = 1]
ds

=
d Pr{m = ∆| f = 1}

ds
∆− d Pr{m =−s∆| f = 1}

ds
s∆−Pr{m =−s∆| f = 1}∆ (50)

and:
d Pr{m| f = 1}

ds
=

p
Γ2( f = 1)

d Pr{ f = 1|m}
ds

− pPr{ f = 1|m}
Γ2( f = 1)2

dΓ2( f = 1)
ds

, (51)

where d Pr{ f=1|m}
ds = φ(

√
α[Θ∗1− (µ +m)])

√
α

(
− dJ/ds

dJ/dΘ∗1
− dm

ds

)
. Again there are two opposing

effects. Provided β > β
1

we have dJ
dΘ∗1

< 0 (Lemma 1). Next:

dJ
ds

= q̂
dΨ(Θ∗1,−s∆)

ds
+

dq̂
ds

Ψ(Θ∗1,−s∆)−
(

d p̂
ds

+
dq̂
ds

)
Ψ(Θ∗1,0)+

d p̂
ds

Ψ(Θ∗1,∆),

where Ψ(Θ∗1,−s∆) > Ψ(Θ∗1,0) > Ψ(Θ∗1,∆). Moreover, dq̂
ds > −d p̂

ds ↘ 0 and dΨ(Θ∗1,−s∆)
ds ↘ 0 for

s→ ∞. We can proof that dJ
ds > 0 and dΘ∗1

ds < 0 provided the private signal precision β and s are

sufficiently high, as assured by Assumption 1. Moreover, dE[m| f=1]
ds is negative and strictly away

from zero for s→ ∞, because [q′| f = 1] = Pr{m = −s∆| f = 1} >> 0 under Assumption 1 as

shown earlier in Proposition 2. Following similar steps, dE[m| f=0]
ds ↘ 0 for s→ ∞. To conclude,

we can show that dE[m| f=0]
ds − dE[m| f=1]

ds > 0 under sufficient conditions akin to the ones provided

in Assumption 1.

A.9 Figure 4: Comparative statics

We prove three results. We first demonstrate in Step 1 that Pr{Θ2 < Θ∗I |m = 0, f = 1}> Pr{Θ2 <

Θ∗U | f = 0}, ∀p,∆. Thereafter, we show that d Pr{Θ2<Θ∗U | f=0}
d p < 0 in Steps 2-5 and that d Pr{Θ2<Θ∗U | f=0}

d∆
<

0 in Steps 6-9. To do so, we consider the special case where µ = γ = 1
2 as in Figure 4. Since s > 1

is only key for the differential information choice, but not for the Bayesian updating channel, we

further simplify the analysis by considering the case s = 1.

Step 1: With µ = γ = 1
2 and s→ 1 we have due to symmetry that Θ∗U = x∗U = 1

2 and p = q. Form

Lemma 2 we have that p′ > q′ if a crisis in region 1 is not observed, f = 0. As a result, ceteris

paribus, p̂′ > q̂′. From the equilibrium condition in equation (21) we can prove by contradiction

that Θ∗U < 1
2 if p′ > q′. Hence, Pr{Θ2 < Θ∗I |m = 0, f = 1}= 1

2 > Pr{Θ2 < Θ∗U | f = 0}, ∀p,∆.
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Step 2: An increase in p has the following implications:

dPr{Θ2 < Θ∗U | f = 0}
d p

=
d p′

d p
Pr{Θ2 < Θ

∗
U |m = ∆}+ p′

dPr{Θ2 < Θ∗U |m = ∆}
d p

(52)

+
dq′

d p
Pr{Θ2 < Θ

∗
U |m =−s∆}+q′

dPr{Θ2 < Θ∗U |m =−s∆}
d p

−
(

d p′

d p
+

dq′

d p

)
Pr{Θ2 < Θ

∗
U |m = 0}+(1− p′−q′)

dPr{Θ2 < Θ∗U |m = 0}
d p

.

Step 3: We first inspect d p′
d p , noting that the symmetry property prevails when changing p in

equation (14) so that Θ∗1 is unaltered and d Pr{ f=1|m}|s=1
d p < 0 and d Pr{ f=0|m}|s=1

d p > 0,∀m∈{∆,−s∆,0}:

d p′

d p

∣∣∣∣
s=1

=

(
Pr{ f = 0|m = ∆}+ pd Pr{ f=0|m=∆}

d p

)
Γ2( f = 0)− pPr{ f = 0|m = ∆}dΓ2( f=0)

d p

Γ2
2( f = 0)

∣∣∣∣
s=1

dΓ2( f = 0)
d p

∣∣∣∣
s=1

=


Pr{ f = 0|m = ∆}+ pd Pr{ f=0|m=∆}

d p

+1
s Pr{ f = 0|m =−s∆}+qd Pr{ f=0|m=−s∆}

d p

−
(
1+ 1

s

)
Pr{ f = 0|m = 0}+(1− p−q)d Pr{ f=0|m=0}

d p


∣∣∣∣
s=1

> 0.

Observe that d Pr{ f=0|m}
d p = 0 if α1→ 0. Doing the same for dq′

d p we can show that d p′|s=1
d p > dq′|s=1

d p > 0

if α1 is sufficiently small and limα1→0

(
d p′
d p

∣∣
s=1

)
= limα1→0

(
dq′
d p

∣∣
s=1

)
> 0.

Step 4: Next, we inspect sign
(

dPr{Θ2<Θ∗U |m}
d p

)
= sign

(
dΘ∗U
d p

)
by analyzing the equilibrium

condition in equation (20), which leads to dΘ∗U
d p < 0 provided p is sufficiently small. In fact,

limp→0 Θ∗U = x∗U = 1
2 and limp→0

dΘ∗U
d p < 0. To see this, we apply the implicit function theorem

to equation (21):
dΘ∗U
d p

=−
dJ(0,Θ∗2(−s∆),Θ∗2(∆),Θ

∗
2(0))/d p

dJ(0,Θ∗2(−s∆),Θ∗2(∆),Θ
∗
2(0))/dΘ∗U

.

From Corollary 3 we know that dL(·)
dΘ∗U

< 0. Moreover:

dJ(·)
d p

∣∣∣∣
s=1

=
d p′

d p
Pr{x∗U |m = ∆}

Γ1
Ψ(Θ∗U ,x

∗
U ,∆)

∣∣
s=1 +

dq′

d p
Pr{x∗U |m =−s∆}

Γ1

∣∣
s=1Ψ(Θ∗U ,x

∗
U ,−s∆)

−
(

d p′

d p
+

dq′

d p

)
Pr{x∗U |m = 0}

Γ1
Ψ(Θ∗U ,x

∗
U ,0)

∣∣
s=1

is strictly negative and away from zero for sufficiently small values of α1.

Step 5: Inspecting equation (52), there exists, by continuity, a sufficiently small positive value
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of α1 such that dPr{Θ2<Θ∗U | f=0}
d p < 0. This concludes the proof of the second result.

Step 6: We next prove the third result. An increase in ∆ has the following implications:

dPr{Θ2 < Θ∗U | f = 0}
d∆

=
d p′

d∆
Pr{Θ2 < Θ

∗
U |m = ∆}+ p′

dPr{Θ2 < Θ∗U |m = ∆}
d∆

(53)

+
dq′

d∆
Pr{Θ2 < Θ

∗
U |m =−s∆}+q′

dPr{Θ2 < Θ∗U |m =−s∆}
d∆

−
(

d p′

d∆
+

dq′

d∆

)
Pr{Θ2 < Θ

∗
U |m = 0}+(1− p′−q′)

dPr{Θ2 < Θ∗U |m = 0}
d∆

.

Step 7: For µ = γ = 1
2 we can show that d p′

d∆

∣∣
s=1 > 0, dq′

d∆

∣∣
s=1 < 0 and d p′

d∆

∣∣
s=1 +

dq′
d∆

∣∣
s=1 = 0.

Step 8: Analog to Step 4 we inspect dPr{Θ2<Θ∗U |m}
d∆

, which requires to examine dΘ∗U
d∆

by analyzing

the equilibrium condition in equation (21). We observe that lim∆→0 Θ∗U = x∗U = 1
2 :

dJ(·)
d∆

∣∣∣∣
s=1

=

 d p′
d∆

Pr{x∗U |m=∆}+p′
d Pr{x∗U |m=∆}

d∆

Γ1( f=0)

−p′ Pr{x∗U |m=∆} dΓ1(·)
d∆

Γ2
1( f=0)

Ψ(Θ∗U ,∆)
∣∣
s=1 + p̂′

dΨ(Θ∗U ,∆)

d∆

∣∣
s=1

+

 dq′
d∆

Pr{x∗U |m=−s∆}+q′
d Pr{x∗U |m=−s∆}

d∆

Γ1( f=0)

−q′ Pr{x∗U |m=−s∆} dΓ1(·)
d∆

Γ2
1( f=0)

Ψ(Θ∗U ,−s∆)
∣∣
s=1 + q̂′

dΨ(Θ∗U ,−s∆)

d∆

∣∣
s=1

+

−
(

d p′
d∆

+ dq′
d∆

)
Pr{x∗U |m = 0}

Γ1( f = 0)
−

(1− p′−q′)Pr{x∗U |m = 0}dΓ1(·)
d∆

Γ2
1( f = 0)

Ψ(Θ∗U ,0)
∣∣
s=1.

We can use the result that d Pr{x∗U |0}
d∆

= 0 to simply the first, third and fifth summands. Moreover,

we can show that these summands are jointly negative by using the symmetry properties and the

fact that p′ > q′ after not observing a crisis in region 1, f = 0. The second summand is negative

and the fourth summand is positive. Due to symmetry they are jointly negative as well since the

absolute value of the derivatives of Ψ are identical. As a result, dΘ∗U
d∆

∣∣
s=1 < 0.

Step 9: Observe that the fifth summand of equation (53) is zero when evaluated at s = 1 based

on Step 7. Moreover, the first and third summand are jointly negative. Based on Step 8 the second

and the sixth summand are negative, while the fourth summand is positive. Again using the fact

that p′ > q′, we can show that the second and forth summand are jointly negative. Taken together,
dPr{Θ2<Θ∗U | f=0}

d∆
< 0. This concludes the proof of the third result.
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A.10 Skewness of the macro shock

This section elaborates on the discussion in section 5.4. We first consider our baseline model and

revisit the key results of this paper (differential information choice and wake-up call contagion

effect) for the special case of µ = γ = 1
2 . As demonstrated in Figure 2 and in Proposition 2, the

differential information choice arises for sufficiently high values of s, giving rise to the wake-up

call contagion effect in Proposition 3. We first show that the differential information choice hinges

on s> 1 by considering the case when s= 1. Observe that for s= 1 the result of Lemma 4 continues

to be valid, which implies that the first and third inequality of (7) in Proposition 2 hold. However,

the second inequality of (7) is violated as we show in the proof of Corollary 2.

A.10.1 Proof of Corollary 2

Consider the equilibrium condition for region 1 in equation (13) and observe that its structure is

fully symmetric with Θ∗1 = x∗1 = 1
2 when µ = γ = 1

2 and s = 1. As a result, the updated prior

beliefs about the macro shock distribution p′ and q′ are exact mirror images when observing a

crisis in region 1 or not. Based on this results, the structure of the equilibrium condition for region

2 in equation (21) also shows exact mirror images when comparing the two scenarios. The same

type of symmetry statement can be made for the signal thresholds. Applying these results to the

value of information in equation (40), we find that there is no differential value of information:

v(n2,0) = v(n2,1), ∀n2 ∈ [0,1]. This concludes the proof of Corollary 2.

A.10.2 Offsetting changes in ∆

Following an analogous argument as in Corollary 2 we can use the symmetry properties to show

that there is no differential information choice for µ = γ = 1
2 and s = 1. For the general case

with s > 1, we revisit Proposition 2. Observe that the result of Lemma 4 is unaffected by the

modification of the model. However, some steps in the proof of Proposition 2 need to be adjusted:

Step 1: The first term in brackets is now directly affected by s through x∗U(1) and indirectly

through x∗I (1,∆(s)) and Θ∗I (1,∆(s)). Second, observe that Θ∗I (1,∆(s)) is growing strictly larger in

s since ds∆(s)
ds > 0. As before, x∗U(1)→ x∗I (1,∆) as s→ ∞. Hence, v(1, f = 0)→ 0.

Steps 2, 3 and 4: After small adjustments the results in the proof of Proposition 2 go through.
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Hence, the third inequality of (7) in Proposition 2 follows.

To conclude, the two key insights on the differential information choice and the wake-up call

contagion effect remain valid for the modified model with offsetting changes in ∆ under sufficient

conditions akin to Assumption 1.

A.10.3 Independent s and q

When s and q vary independently, we have E[m] = 0 for s = 1 and E[m] < 0 for s > 1. In the

former case the model is unchanged and the analysis of Corollary 2 applies. For s > 1, we revisit

inequality (7) in Proposition 2. The result of Lemma 4 is again unaffected by the modification of

the model, while the proof of Proposition 2 needs some adjustments:

Step 1: Despite q not being anymore affected by s, q′ is still affected via Pr{ f ,m = −s∆}. As

before, x∗U(1)→ x∗I (1,∆) as s→ ∞ and v(1, f = 0)> v(0, f = 0)→ 0.

Step 2: For f = 1 we now have that:

∂

∂ s

(
q′

p′
=

q
p

Pr{ f = 1,m =−s∆}
Pr{ f = 1|m = ∆}

)
> 0.

The result flips if f = 0.

Step 3 and 4: Observe that, for a given µ and s > 1, the event of a negative macro shock is never

considered to be the most probable state of the world, i.e. q′< p′, provided that q is sufficiently low:
p
q ≥ Pr{ f |m = −s∆}(Pr{ f |m = ∆})−1. Moreover [q′| f = 1] >> 0, while [q′| f = 0] is arbitrarily

small for high values of µ . Again, both the first and second summand of v(0, f = 1) must be

strictly positive and away from zero, since x∗U 9 x∗I (0,∆) and x∗U 9 x∗I (0,−s∆). By continuity, the

result also holds for large, but finite, values of µ and s, as well as for sufficiently small 1− p−q.

Hence, v(n2 = 0, f = 1)> v(n2 = 1, f = 0) and inequality (7) follows.

In sum, the results go through for sufficient conditions akin to Assumption 1 with the addition

that q is sufficiently low. Based on the differential information choice for s > 1 sufficiently high,

the numerical analysis in Figure 6 demonstrates that the wake-up call contagion effect can prevail

in the modified model.
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