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Abstract 

This paper proposes a novel regression-based approach to the estimation of Gaussian 
dynamic term structure models that avoids numerical optimization. This new estimator is 
an asymptotic least squares estimator defined by the no-arbitrage conditions upon which 
these models are built. We discuss some efficiency considerations of this estimator, and 
show that it is asymptotically equivalent to maximum likelihood estimation. Further, we 
note that our estimator remains easy-to-compute and asymptotically efficient in a variety 
of situations in which other recently proposed approaches lose their tractability. We 
provide an empirical application in the context of the Canadian bond market. 

JEL classification: E43, C13, G12 
Bank classification: Asset pricing; Econometric and statistical methods; Interest rates 

Résumé 

Un cadre de régression novateur permettant d’éviter l’optimisation numérique est proposé 
pour l’estimation de modèles dynamiques gaussiens de la structure par terme des taux 
d’intérêt. Ce nouvel estimateur est un estimateur des moindres carrés asymptotiques et est 
défini par les conditions d’absence d’arbitrage à la base de ces modèles. L’auteur analyse 
les caractéristiques d’efficience de son estimateur et montre que celui-ci est 
asymptotiquement équivalent à un estimateur du maximum de vraisemblance. De plus, il 
reste simple à calculer et asymptotiquement efficient dans un éventail de situations où 
d’autres approches récentes deviennent très difficiles à utiliser. L’auteur présente une 
application empirique de son cadre au cas du marché obligataire canadien. 

Classification JEL : E43, C13, G12 
Classification de la Banque : Évaluation des actifs; Méthodes économétriques et 
statistiques; Taux d’intérêt 

 

 



1 Introduction

The maximum likelihood (ML) approach is considered as the most natural way to esti-

mate Gaussian dynamic term structure models (GDTSMs), since they provide a complete

characterization of the joint distribution of yields.1 However, the solution of the optimiza-

tion problem involving maximization of the density of the yields does not exist in closed

form, except in very few speci�c cases. Consequently, researchers often have to rely on

cumbersome optimization techniques to estimate the parameters of the model, facing di-

verse numerical issues that are usually magni�ed by (i) the large number of parameters

describing the dynamics of the term structure of interest rates, (ii) the highly non-linear

nature of the likelihood function, and/or (iii) the existence of multiple local optima (see,

for example, the discussions in Du¤ee and Stanton, 2012; Hamilton and Wu, 2012).

Motivated by these numerical challenges, this paper considers a new linear regression

approach to the estimation of GDTSMs that completely avoids numerical optimization

methods. Speci�cally, our linear estimator is an asymptotic least squares (ALS) estimator

that exploits three features that characterize this class of models. First, GDTSMs have

a reduced-form representation whose parameters can be easily estimated via a set of

ordinary least squares (OLS) regressions. Second, the no-arbitrage assumption upon

which GDTSMs are built can be characterized as a set of implicit constraints between these

reduced-form parameters and the parameters of interest. Third, this set of restrictions

is linear in the parameters of interest. Consequently, we propose a two-step estimator.

In the �rst step, estimates of the reduced-form parameters are obtained by OLS. In the

second step, the parameters of the GDTSMs are inferred by forcing the no-arbitrage

constraints, evaluated at the �rst-stage estimates of the reduced-form parameters, to be

as close as possible to zero in the metric de�ned by a given weighting matrix. Note

that, since the constraints are linear in the parameters of interest, the solution to the

estimation problem in this second step is known in closed form. In fact, in its most basic

form (i.e., using an identity weighting matrix), the estimates of the parameters of the

GDTSMs resemble those obtained from an OLS cross-sectional regression involving the

reduced-form parameter estimates (i.e., the estimated bond factor loadings). Moreover,

our ALS estimator is consistent and asymptotically normally distributed.

As in the case of generalized method of moments (GMM) estimation, e¢ ciency gains

can be achieved by selecting an appropriate weighting matrix. As noted by Gourieroux,

Monfort and Trognon (1982, 1985) (GMT hereafter), the optimal weighting matrix is

equal to the inverse of the asymptotic covariance matrix of the set of implicit constraints

1See, for example, Chen and Scott (1993), Dai and Singleton (2002), Kim and Wright (2005), Kim
and Orphanides (2005), Aït-Sahalia and Kimmel (2010), Christensen, Diebold and Rudebusch (2011)
and Joslin, Singleton and Zhu (2011) for some term structure models estimated by ML.
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between reduced-form and the parameters of interest. However, we show that such a

matrix is singular in the context of GDTSM estimation and therefore the de�nition of an

optimal ALS estimator in GMT breaks down. For this reason, we borrow from Peñaranda

and Sentana (2012), who study the problem of obtaining an optimal GMM estimator when

the asymptotic variance of the moment conditions is singular in the population, to extend

the theory of optimal ALS estimation to cover the singular set-up.

We also discuss several extensions of our estimation method. First, we show how to

estimate GDTSMs subject to certain equality constraints on the structural parameters.

This includes the important case of exclusion (zero) restrictions on the parameters driving

the prices of risk (see, e.g., Cochrane and Piazzesi, 2008), but also the case of more

complicated non-linear restrictions. Second, we discuss how to estimate GDTSMs where

some of the factors are unspanned, as in Joslin, Priebsch and Singleton (2012). Such

factors are not related to the contemporaneous cross-section of interest rates, but they

help forecast future excess returns on the bonds. Third, we show how to accommodate

for higher-order dynamics in the parameterization of the distribution of yields under the

physical measure (i.e., a VAR(p) model with p > 1), while preserving the parsimonious

factor representation of yields, as in Joslin, Le and Singleton (2013). Fourth, we show

how our framework can be adapted to handle autocorrelation in the measurement errors

and/or overlapping in the dynamics under the physical measure. Fifth, we discuss how

the choice of the bonds to be used in the estimation of GDTSMs has consequences on

the properties of the GDTSM estimators. Sixth, we show how to compute small-sample

standard errors using bootstrap methods and how to address some of the biases associated

with the extreme persistence found in interest rates (see, e.g., Bauer, Rudebusch and Wu,

2012).

Recent approaches to the estimation of GDTSMs that have substantially lessened some

of the numerical challenges faced by researchers include the maximum likelihood approach

of Joslin, Singleton and Zhu (2011), the minimum-chi-square estimator of Hamilton and

Wu (2012), and the regression-based approach of Adrian, Crump and Moench (2012). In

particular, we show that the optimal ALS estimator of the parameters of a GDTSM is

asymptotically equivalent to the ML estimator of Joslin, Singleton and Zhu (2011). We

also show that both the Hamilton and Wu (2012) and Adrian, Crump and Moench (2012)

estimators are asymptotic least squares estimators, where these estimators di¤er from

ours either in the weighting matrix employed, the parameterization of the no-arbitrage

conditions, the reduced-form model estimates, and/or the existence of restrictions on

the parameters of interest. This uni�ed framework allows us to conclude that our ALS

estimator remains tractable and asymptotically e¢ cient in a variety of situations in which

the other approaches lose their tractability. Along these lines, we provide a Monte Carlo
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study to con�rm that the tractability of the ALS estimator does not come at the expense

of e¢ ciency losses or bad �nite-sample properties.

For illustrative purposes, we estimate a three-factor model and decompose the Cana-

dian ten-year zero-coupon bond yield into an expectations and term premium component.

Our three-factor speci�cation is designed to capture all the economically interesting vari-

ation in both the cross-section of interest rates and bond risk premia, and resembles the

Cochrane and Piazzesi (2008) model of the U.S. yield curve. Speci�cally, we identify our

�rst two factors with the �rst two principal components of the Canadian yield curve, while

the third one is a return-forecasting factor similar in spirit to that presented in Cochrane

and Piazzesi (2005). Moreover, the model is estimated subject to a variety of non-linear

restrictions on the parameters of the model which, absent our proposed regression-based

framework, would greatly complicate both the estimation and inference. In fact, we ex-

ploit the numerical tractability of our estimation method to compute bootstrap p-values

that correct for the generated regressor problem inherent in the estimation of our model.

The structure of the paper is as follows. In section 2, we brie�y describe the class

of GDTSMs, introduce our new linear estimator and reinterpret this estimator within

the ALS framework. In section 3, we brie�y review the asymptotic properties of ALS

estimators, and discuss how to conduct optimal ALS estimation in the singular set-up

that characterizes GDTSMs. We discuss the advantages of our method with respect to

recently suggested approaches to the estimation of GDTSMs in section 4. In section 5, we

present a Monte Carlo exercise designed to assess the �nite-sample properties of our new

linear estimator. Section 6 discusses several extensions of our regression-based framework,

and Section 7 contains our empirical results. Finally, we provide some concluding remarks

and future lines of research in Section 8. Auxiliary results are gathered in the appendix.

2 Gaussian a¢ ne term structure models

2.1 General framework

We start by considering a (M � 1) vector of state variables (or pricing factors), ft, that
describes the state of the economy. For the moment, we remain �agnostic� as to the

nature of these pricing factors. The dynamic evolution of the state variables under the

physical, or historical measure, P, is given by a Gaussian VAR(1) process:

ft+1 = �+�f t + vt+1; (1)

where vt+1 � iid N(0;�).
Let rt be the continuously compounded one-period, or short-term, interest rate. The
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short rate is related to the set of state variables through the following a¢ ne relation:

rt = �0 + �
0
1ft: (2)

The model is completed by specifying the stochastic discount factor (SDF) to be

exponentially a¢ ne in ft (e.g., Ang and Piazzesi, 2003):

�t+1 = exp

�
�rt �

1

2
�0t�

�1�t � �0t��1vt+1

�
; (3)

with prices of risk given by �t = �0+�1ft: This (strictly positive) SDF, �t+1, can be used

to price zero-coupon bonds using the following recursive relation:

Pt;n = Et
�
�t+1Pt+1;n�1

�
; (4)

where Pt;n is the price of a zero-coupon bond of maturity n periods at time t. In particular,

it is possible to show that solving equation (4) is equivalent to solving the following

equation:

Pt;n = E
Q
t

"
exp

 
�
n�1X
i=0

rt+i

!#
;

where EQt denotes the expectation under the risk-neutral probability measure, Q. Under
the risk-neutral probability measure, the dynamics of the state vector ft are characterized

by the following VAR(1) process:

ft+1 = �
Q+�Qft + v

Q
t+1; (5)

with �Q = �� �0; �Q = �� �1 and vQt+1 � iid N(0;�).
Solving (4), we �nd that the continuously compounded yield on an n-period zero-

coupon bond at time t, yt;n = � 1
n
logPt;n, is given by

yt;n = an + b
0
nft; (6)

where an = �An=n and bn = �Bn=n, and An and Bn satisfy the following set of recursive
relations:

B0n = B
0
n�1�

Q +B01; (7)

An = An�1 +B
0
n�1�

Q +
1

2
B0n�1�Bn�1 + A1; (8)

for n = 2; :::; N where is N is the largest maturity under consideration.

The recursion is started by exploiting the fact that the a¢ ne pricing relationship

is trivially satis�ed for one-period bonds (n = 1), which implies that A1 = ��0; and
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B1 = ��1. Speci�cally, solving equations (7) and (8) forward, we obtain:

b0n =
1

n
�01

n�1X
j=0

�
�Q�j ; (9)

an = �0 +
1

n

n�1X
j=1

jb0j�
Q � 1

2n

n�1X
j=1

j2b0j�bj: (10)

2.2 A new linear estimator for GDTSMs

An important characteristic of the Gaussian a¢ ne bond pricing model above is that the

pricing recursive relations in (7) and (8) are linear in �Q and �Q. Therefore, if the

innovation covariance matrix � and the set of coe¢ cients An and Bn were observed

directly, one could easily estimate the risk-neutral parameters of the model using a set

of (cross-sectional) OLS regressions. In such a case, the linear structure of the model

would allow us to recover an estimate of �Q from the (cross-sectional) OLS regression of�
B0n+1 �B01

�
on B0n:

b�Q =

 
NX
n=1

BnB
0
n

!�1 " NX
n=1

Bn
�
B0n+1 �B01

�#
; (11)

while an estimate of �Q can be obtained from the regression of (An+1�An� 1
2
B0n�Bn�A1)

on B0n :

b�Q =  NX
n=1

BnB
0
n

!�1 " NX
n=1

Bn(An+1 � An �
1

2
B0n�Bn � A1)

#
: (12)

However, this linear estimator is infeasible because the innovation covariance matrix �;

and the set of coe¢ cients An and Bn are, in practice, unknown. Nevertheless, consistent

estimates of these objects are readily available from a reduced-form representation of the

model (see Hamilton and Wu, 2012). We propose, instead, to replace the unknown objects

in equations (11) and (12) above by consistent estimates obtained from the reduced-form

representation of the model.

To obtain the reduced-form representation of the GDTSM, it is convenient to resort

to the state-space representation of the observed variables (i.e., the bond yields) implied

by the model. In a general state-space representation, there is a transition equation

that describes the dynamic evolution of the state factors over time, and a measurement

equation that relates the observed data to the state factor. In terms of our asset pricing

model, the VAR dynamics in (1) can be interpreted as the transition equation, while the

pricing relationship in (6) is the measurement equation. Let yot;n denote the observed

yields, which we assume are subject to measurement error. Let yt = [yt;1; yt;2; :::; yt;N ]0 be

the vector of model-implied yields that stack the a¢ ne mapping (6), and let yot be the
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equivalent vector of observed yields. Let �t be a zero-mean measurement error that is

i.i.d. across time and that has a covariance matrix 
. Then, the asset pricing model,

joint with our assumption on the measurement errors, implies that the vector yot has the

following state-space representation:

yot = a+ bf t + �t; (13)

ft = �+�f t�1 + vt; (14)

where the corresponding elements of a and b satisfy equations (9) and (10). In particular,

note that a = a(�Q;�Q;�) and b = b(�Q) are non-linear functions of �Q, �Q, and �.

For completeness, we assume that E(�tvs) = 0 for all t and s.

Once again, estimation of the reduced-form parameters in equations (13) and (14)

could be greatly simpli�ed if the bond factors, ft, were observed. Speci�cally, since the

errors of the model are conditionally homoskedastic, the maximum likelihood estimates

of the reduced-form parameters could be trivially obtained via a set of OLS regressions

(see Sentana, 2002, and Hamilton and Wu, 2012): (i) the (cross-sectional) coe¢ cients a

and b could be estimated from the OLS regression of yot on a constant and ft; (ii) the

(time-series) coe¢ cients � and � could be estimated from the OLS regression of ft on a

constant and its lag.

In order to overcome this issue, we follow Joslin, Singleton and Zhu (2011) in working

with bond state variables that are linear combinations (i.e., portfolios) of the yields them-

selves, ft = P0yot , where P is a full-rank matrix of weights, and by further assuming that

ft is observed perfectly.2 That is, P0(yot � yt) = P0�t = 0 8t.3 This assumption allows us
to factorize the joint likelihood function into the marginal component of ft and the con-

ditional components corresponding to all the individual yields. That is, this assumption

makes ft observable in practice and, as noted above, allows us to obtain maximum likeli-

hood estimates of the reduced-form parameters by OLS. In practice, we choose P so that

ft are the �rst M principal components of the cross-section of yields. Finally, estimates

of the prices of risk parameters �0 and �1 can then be obtained as the di¤erence between

the parameters driving the physical and risk-neutral measures.4

2An implication of the a¢ ne pricing framework is that we are free to consider either latent variables
or linear combination of yields as the set of factors, given that one can be understood as a rotation of
the other (see Joslin, Singleton and Zhu, 2011, and Joslin, Le and Singleton, 2012).

3We follow Joslin, Singleton and Zhu (2011) in assuming that 
 = �2� � (P?P0?) where P0? is a basis
for the orthogonal component of the row span of P0. This guarantees that P0
P = 0. In addition,
Joslin, Singleton and Zhu (2011) note that one can concentrate �2� from the likelihood function throughb�2� =PT

t=1

PN
n=1(y

o
t;n � yt;n)2=(T � (N �M)).

4The approach in this paper can be extended to the case of observable factors with measurement
errors. In such a case, and given the dimensionality of the problem, one needs to estimate the reduced-
form parameters using the computationally e¢ cient techniques of Jungbacker and Koopman (2008). Still,
it is important to recall that Joslin, Le and Singleton (2012) show that, in practice, the (�tting) gain
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We end this section by providing a multi-step algorithm that summarizes the imple-

mentation of our new linear estimator for GDTSMs:

Step 1 Estimate the parameters of the reduced-form model by linear regressions:

(1a) Estimate the cross-sectional coe¢ cients a and b in equation (13) from OLS

regressions of the observed yields, yot , on a constant and the bond factors ft

(1b) Obtain the coe¢ cients �; �; and � driving the VAR dynamics in (1) by OLS.

Step 2 Recover the coe¢ cients driving the risk-neutral dynamics of the factors using

cross-sectional regressions:

(2a) Recover bAn = �nban and bBn = �nbbn, where ban; and bbn are the estimates of
a and b obtained in step 1. Set b�0 = ba1 and b�1 = bb1

(2b) Run the cross-sectional regressions in (11) and (12) to obtain an estimate of

�Q and �Q:

Step 3 Obtain an estimate of the prices of risk as a di¤erence between the coe¢ cients

driving the dynamics under the physical and risk-neutral measures: b�0 = b� � b�Q
and b�1 = b�� b�Q.

2.3 An asymptotic least squares interpretation

In this section, we provide an alternative interpretation of this estimator based on the

asymptotic least squares framework of GMT. As noted by these authors, many empirical

models, including the one presented in this paper, can be formalized as a set of relation-

ships g(�;�) = 0 between the parameters of interest �; and a set of auxiliary parameters

�; for which a consistent and asymptotically normal estimate b� is available. This frame-
work suggests estimating the structural parameters by trying to �nd the set of parameters

� that makes g(b�;�) as close as possible to zero, in the metric of a given weighting ma-
trix WT .5 For this reason, the ALS estimation framework is also known as a minimum

distance estimation, and g(�;�) is sometimes referred to as a distance function.6

from assuming that all observable factors are subject to measurement errors is minimal when one uses
the �rst M principal components of yields as factors.

5The ALS estimator is similar in spirit to Hansen�s (1982) GMM, which is based on moment conditions
E [h(zt;�)] = 0; t = 1; :::; T , where zt is a vector of data in the time t information set. These moments
conditions are then averaged to obtain T�1

PT
t=1 h(zt;�), and an estimate of � is obtained by minimizing a

quadratic form in these sample moment conditions,
h
T�1

PT
t=1 h(zt;�)

i0
W
h
T�1

PT
t=1 h(zt;�)

i
. Notice

that the main di¤erence between the GMM and ALS frameworks is that, in the latter case, the distance
function g(�;�) is not necessarily a linear function of sample moments.

6Speci�cally, (classical) minimum distance estimation refers to the case where the distance function
has the form g(�;�) = � � p(�) (see, e.g., Chamberlain, 1982).
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The linear estimator above falls under the ALS estimation framework. Speci�cally, we

start by noting that the vector of auxiliary parameters is given by � = (�01;�
0
2;�

0
3)
0 (i.e.,

the reduced-form parameters), where

�1=
�
vec
�
(a b)0

�	0
;

�2=
�
vec
�
(� �)0

�	0
;

�3=
�
vech

�
�1=2

��0
:

In order to guarantee the positivity of the covariance matrix �, we focus on its Cholesky

decomposition, � = �1=2�1=20 rather than on � itself. Thus, we have a total of H =

(N +M)� (M + 1) +M � (M + 1)=2 auxiliary parameters.

Note that the maximum likelihood estimation of the reduced-form parameters coin-

cides with OLS estimation equation-by-equation, and therefore there is a consistent and

asymptotically normal estimate b� available. Speci�cally, we have that
p
T

240@ b�1b�2b�3
1A�

0@ �01
�02
�03

1A35 d�! N

240@ 0
0
0

1A ;
0@ V�1 0 0

0 V�2 0
0 0 V�3

1A35 ;
p
T
�b� � �0� d�! N (0;V�) ;

where V�1 = 
 
 E(xtx
0
t)
�1; V�2 = � 
 E(xtx

0
t)
�1; V�3 = 2E(� 
 �)E0; with

xt = (1 f
0
t)
0, E =

�
LM(I+KMM)(�

1=2 
 I)L0M
��1

D+
M ; where LM is an �elimination ma-

trix� such that vech (�) = LMvec (�), KMM is a �commutation matrix� such that

KMMvec(F) = vec(F
0) for any (M�M) matrix F; and D+

M = (D0
MDM)

�1D0
M where DM

is a �duplication matrix�satisfying DMvech (�) = vec (�) (see Lütkepohl, 1989).

Next, we consider the pricing recursions in equations (7) and (8). By stacking these

two sets of equations for all bond yields, we can express the restrictions implied by the

no-arbitrage model in compact form as

G(�;�)0 = Y(�)�X(�)�Q0 = 0; (15)

where

Y(�) =

0BBBBBBB@

A1 B01
A2 � A1 � 1

2
B01�B1 � A1 B02 �B01
...

...
An � An�1 � 1

2
B0n�1�Bn�1 � A1 B0n �B01
...

...
AN � AN�1 � 1

2
B0N�1�BN�1 � A1 B0N �B01

1CCCCCCCA
; X(�) =

0BBBBBBB@

�1 0
0 B01
...

...
0 B0n�1
...

...
0 B0N�1

1CCCCCCCA
;

and where �Q is a matrix that collects the parameters driving the dynamics under the

risk-neutral measure:

�Q0 =

�
�0 �01
�Q �Q

�
:
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In addition to considering vec(�Q), it is convenient to add the parameters describing the

dynamics of the factors under the physical measure to the vector of structural parameters,

�, such that � = (�01;�
0
2;�

0
3)
0 where

�1=vec(�
Q)=

�
(�0 �

0
1) ;
n
vec
h�
�Q �Q

�0io0�0
;

�2=
�
vec
�
(� �)0

�	0
;

�3=
�
vech

�
�1=2

��0
:

Thus, we have a total of K = (2M+1)� (M+1)+M� (M+1)=2 parameters of interest.

By vectorizing equation (15) and adding a set of identities that de�ne these new

elements of � to be equal to the corresponding elements of �, we arrive at the following

expression for g(�;�):

g(�;�) = (�)� �(�)�;

where (�) =
n
vec
�
Y(�)0

�0
;�02;�

0
3

o
and

�(�) =

0@ X(�)
 I 0 0
0 I 0
0 0 I

1A :
We note that the linear estimator proposed in section 2.2 above is numerically equiva-

lent to the estimator that minimizes a quadratic form in the distance function, evaluated

at the estimates of the reduced-form parameters, b�, where the weighting matrix has been
chosen to be the identity matrix,WT = I:

b�OLS = argmin
�
T [(b�)� �(b�)�]0 [(b�)� �(b�)�] : (16)

More importantly, since the distance function is linear in �; the solution to the minimiza-

tion problem in equation (16), b�OLS; is known in closed form. In particular, we have that
�(b�)0 h(b�)� �(b�)b�OLSi = 0, and therefore

b�OLS = �b�0b���1 �b�0b� ; (17)

where b � (b�) and b� = �(b�).
2.4 Self-consistency and optimal ALS estimation

As in the case of GMM estimation, an identity weighting matrix is not necessarily op-

timal in this context and (asymptotic) e¢ ciency gains can be achieved by selecting an

appropriate weighting matrix. As noted by GMT, the optimal weighting matrix is equal

to (an estimate of) the inverse of the asymptotic variance of the distance function. By
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the standard delta method, this covariance matrix is related to the asymptotic covariance

of the reduced-form coe¢ cients V� through the following relationship: Vg= G�V�G
0
�;

where G�(�;�) =@g(�;�)=@�
0 is the Jacobian of the distance function with respect to

the auxiliary parameters.

However, the matrix V� has a reduced-rank structure in our set-up which, given that

G� is a non-singularH�H matrix, implies a singularity inVg as well. To understand why

this happens, we need to discuss the concept of self-consistency of an a¢ ne term structure

model. As noted by Cochrane and Piazzesi (2005), one has to guarantee that, when

choosing state variables that are linear combinations (portfolios) of the yields, ft = P0yot ,

the state variables that come out of the model need to be the same as the state variables

that we started with. In other words, it is necessary to ensure that the pricing of portfolios

of yields is also consistent with equation (6) such that ft = P0yt = P0a(�) +P0b(�)f t.

Thus, self-consistency of the model amounts to imposing the following set of constraints

when estimating the model:

P0a(�)= 0; P0b(�)= I: (18)

While the OLS estimator in equation (17) does not necessarily satisfy these constraints,

we �nd that, in practice, b�OLS delivers parameter estimates that almost satisfy such
restrictions. Two features of our proposed estimation approach explain this result. First,

given our assumption that ft is observed perfectly, the OLS estimates of the reduced-form

coe¢ cients automatically satisfy such restrictions:

P0ba= 0; P0bb= I; (19)

and, second, our linear estimator tries to match those as closely as possible. The problem

is that, since the reduced-form coe¢ cients satisfy the self-consistency restrictions in (19),

V� has a reduced rank structure, which implies a singular Vg. Hence, the de�nition

provided by GMT of an optimal ALS estimator breaks down in our set-up.

In the next section, we brie�y review the asymptotic distribution of ALS estimators

and discuss some optimality considerations for these estimators when the covariance ma-

trix of the distance function is singular. In particular, we adapt the work of Peñaranda

and Sentana (2012) �who study the problem of obtaining an optimal GMM estimator

when the asymptotic variance of the moment conditions is singular in the population �to

the ALS framework. In particular, we show that imposing the self-consistency restrictions

when estimating the model and, simultaneously, replacing the ordinary inverse of the co-

variance of the distance function by any of its generalized inverses delivers an optimal

ALS estimator.
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3 Asymptotic least squares estimation of GDTSMs

Prior to de�ning an optimal ALS estimator in a singular set-up, we introduce some formal

notation and brie�y review the estimation framework proposed by GMT.

3.1 Asymptotic distribution of ALS estimators

As already discussed in the previous section, let � 2 � � RK be the vector of parameters
of interest, and let � 2 � � RH be the vector of auxiliary parameters. Both sets of

parameters are related through a system of implicit equations of the form g(�;�) = 0;

where g(�;�) is a (G � 1) twice continuously di¤erentiable distance function. Let the
Jacobian of this distance function be denoted by

G�(�;�) =
@g(�;�)

@�0
; G�(�;�) =

@g(�;�)

@�0
:

Let p(�) be a function satisfying g [p(�);�] = 0 for all � 2 �; which implies that the
system of implicit equations g(�;�) = 0 has a unique solution for � given �; and let

this solution be given by � = p(�). For example, the function p(�) can be thought of

as the set of auxiliary parameters implied by the set of parameters �. In the case of the

estimation of GDTSMs, we note that the set of implicit equations g(�;�) = 0 is related

to the pricing recursions in equations (7) and (8); the set of implied auxiliary parameters

can be found in equations (9) and (10); and the number of auxiliary parameters, H, is

equal to the dimension of the distance function, G.

Let b� denote a strongly consistent and asymptotically normal estimator of the aux-
iliary parameters, such that as T ! 1, b� ! �0= p(�0), P�0 almost surely; andp
T (b� � �0) d�! N

�
0;V�(�

0)
�
; where T denotes the number of observations in the

sample and �0 denotes the true value of the parameters of interest; i.e., g(�0;�0) = 0.

GMT propose to minimize a quadratic form in the distance function evaluated at the

estimates of the auxiliary parameters, b�:
b�ALS = argmin

�
Tg(b�;�)0WTg(b�;�); (20)

where WT is a positive semi-de�nite weighting matrix that possibly depends on the

observations. In other words, the ALS estimation principle consists of forcing the G

implicit equations evaluated at b� to be as close as possible to zero in the metric de�ned
byWT . Further notice that, when the distance function is linear in the set of parameters

of interest (as in the case of the estimation of GDTSMs), the solution to the optimization

problem in (20) is known in closed form.

Now, letWT converge P�0 almost surely toW; a non-stochastic semi-de�nite weighting

matrix of size G; and rank greater or equal than K. If the true values of the parameters

11



of interest and auxiliary parameters, �0 and �0, both belong to the interior of � and �;

respectively, and G0
�WG� evaluated at �

0 and �0 is non-singular (which implies that the

rank of G�(�
0;�0) = K and that K � G), then (see GMT for the proof) b�ALS is strongly

consistent for every choice ofWT ; and its asymptotic distribution is given by
p
T (b�ALS � �0) d�! N

�
0; (G0

�WG�)
�1G0

�WG�V�G
0
�WG�(G

0
�WG�)

�1� ; (21)

where the various matrices in this equation are evaluated at �0 and �0.

As in the case of (overidenti�ed) GMM estimation, it is possible to choose an �optimal�

weighting matrix, in the sense that the di¤erence between the asymptotic variance of the

resulting ALS estimator and another ALS estimator based on any other quadratic form

in the same distance function is positive de�nite. In particular, GMT show that when

G�V�G
0
� and G

0
�(G�V�G

0
�)
�1G� are non-singular when evaluated at �

0 and �0 (which

implies that the rank ofG�(�
0;�0) = G and thatG � H), then an optimal ALS exists and

corresponds to the choice of a weighting matrixWT that converges toW = (G�V�G
0
�)
�1.

Note that, by the delta method, the optimal weighting matrix is simply the asymptotic

covariance of the distance function evaluated at the estimates of the auxiliary parameters

Vg(�
0) = avar

hp
Tg(b�;�0)i = G�(�

0;�0)V�(�
0)G0

�(�
0;�0). However, usingW = V�1

g

in our set-up is not feasible because, in such a case, the weighting matrix needs to be

evaluated at the true value �0 (which is unknown). Instead, as in the case of optimal

GMM estimation, it is possible to replace Vg(�
0) with an estimator bVg(�) evaluated at

some initial consistent estimator of �0. As is standard in the literature, we will use a

two-step ALS estimation in which we �rst obtain an estimate of � by using the identity

matrix (OLS approach), and then evaluate the weighting matrix at this estimate:

bVg = G�

h
p(b�OLS); b�OLSi bV�(b�OLS)G�

h
p(b�OLS); b�OLSi :

Further, Kodde, Palm and Pfann (1990) note that if (i) the system of relationships

g(�;�) = 0 is complete,7 and (ii) � is estimated by maximum likelihood (ML), or a

method asymptotically equivalent to ML, then the optimal ALS estimator is asymptoti-

cally equivalent to the ML estimator of �.

3.2 Optimal ALS estimation in a singular set-up

Unfortunately, V�(�
0) has a reduced-rank structure in our set-up, because the estimates

of the reduced-form coe¢ cients satisfy the self-consistency restrictions in equation (19).

As noted above, this renders Vg(�
0) singular as well, which in turn makes the de�nition

provided by GMT of an optimal ALS estimator break down.
7The system g(�;�) = 0 is complete if the dimension of the set of reduced-form parameters, �, is

equal to the dimension of g(�;�); and the Jacobian G�(�;�) has full rank (i.e., rank[G�(�0;�0)] = G)
when evaluated at the true value.
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In order to provide an optimal ALS estimator when the asymptotic covariance of the

distance function no longer has full rank, we borrow from Peñaranda and Sentana (2012),

who study a conceptually similar problem to ours: obtaining an optimal GMM estimator

when the asymptotic variance of the moment conditions is singular in the population. In

the remainder of this section, we adapt their methodology to the case of ALS estimation

and we refer the reader to their work for further details.

Speci�cally, we focus on singularities of the asymptotic covariance of the distance

function that satisfy the following two assumptions:

Assumption 1. Let �(�) denote a G� S matrix of continuously di¤erentiable func-
tions of �, where 0 � S � K. The subset of � for which

�0(�)
hp
Tg(b�;�)i p�! 0; (22)

can be fully characterized by r(�) = 0, where r(�) is a S � 1 known continuously di¤er-
entiable transformation of �.

Assumption 2. For S > 0; we have that r(�0) = 0; rank
�
Vg(�

0)
�
= G � S, and

rank
�
@r(�0)=@�0

�
= S.

These two assumptions are the ALS analogue to the assumptions in Peñaranda and

Sentana (2012). The �rst assumption de�nes r(�) = 0 as the implicit K �S-dimensional
manifold in � over which S linear combinations of

p
Tg(b�;�) converge in probability to

zero. The second assumption ensures that the true values of �0 belong to that manifold.

More importantly, these two assumptions cover the empirically relevant case of the esti-

mation of GDTSMs within an ALS framework, where the singularity of the covariance

matrix of the distance function is a consequence of the estimates of the reduced-form

model satisfying the self-consistency restrictions.8

Similarly to Peñaranda and Sentana (2012), we show in Proposition 1 in Appendix A9

that the optimal ALS estimator satis�es

b�OALS = argmin
�
Tg(b�;�)0V+

g (�
0)g(b�;�) s.t. r(�) = 0: (23)

8To be more speci�c, Assumption 1 covers the case where (i) the restrictions on � can be written as a
set of restrictions on the auxiliary parameters implied by the model p(�), i.e. r(�) = r [p(�)]= 0, (ii) b�
denote a strongly consistent and asymptotically normal estimator of the auxiliary parameters, such that
as T ! 1, b� ! �0= p(�), P� almost surely for all � 2 �; and (iii) b� satis�es that r(b�) = 0. Under
these three assumptions, we can expand both g(�;�) and r(�) = 0 around p(�) :

p
Tg(b�;�) = G�(�)

p
T [b� � p(�)] + op(1);p

Tr(b�) = R�(�)
p
T [b� � p(�)] + op(1);

where R�(�) = @r [p(�)] =@�
0. Since r(b�) = 0, the linear combinations of

p
Tg(b�;�) given by

�0(�) = R�(�) [G
0
�(�)G�(�)]

�1
G0
�(�) converge in probability to zero.

9We note that this is simply the ALS analogue of Proposition 1 in Peñaranda and Sentana (2012).
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That is, optimal ALS estimation and inference under the type of singularities characterized

by Assumptions 1 and 2 requires both (i) imposing the parametric restriction r(�) = 0

when estimating the model and, simultaneously (ii) replacing the ordinary inverse of

Vg(�
0) by any of its generalized inverses, V+

g (�
0). Moreover, as in the case of GMM,

the optimized value of the ALS criterion function has an asymptotic �2 distribution with

degrees of freedom equal to the number of overidentifying restrictions (G�K).
An alternative way to view this estimator, as discussed in Peñaranda and Sentana

(2012), is as follows. Let the spectral decomposition of Vg(�
0) given above be written as

Vg(�
0) =

�
T1 T2

�� � 0
0 0

��
T01
T02

�
= T1�T

0
1;

where � is a (G�S)�(G�S) positive de�nite diagonal matrix and focus, for the moment,
on the Moore-Penrose generalized inverse of Vg(�

0), such that

VMP+
g (�0) = T1�

�1T01:

Then, the optimal ALS estimator in this singular set-up is equivalent to the constrained

ALS estimator that works with the reduced set of K�S distance functions T01g(b�;�) and
the restrictions r(�) = 0. In this way, note that the ALS estimator that uses the Moore-

Penrose generalized inverse of Vg(�
0) alone without the equality restrictions r(�) = 0

will not likely be optimal, since it drops the S asymptotically degenerate, i.e. most

informative, linear combinations of
p
Tg(b�;�). In fact, it might even be the case that �

is not identi�ed from the set of reduced implicit relations T01g(b�;�) = 0. This will occur,
for example, if K > G� S.
Again the choice of the weighting matrixW = V+

g (�
0) is not feasible because �0 is not

known. In particular, we replace V+
g (�

0) by the generalized inverse of bVg(�) evaluated

at some initial consistent estimator of �0 (e.g., using the identity matrix as the weighting

matrix). We note that, since we focus on the empirical relevant case that b� satis�es the
parametric restriction r(�) = 0, bVg will, under standard regularity conditions, consis-

tently estimate V+
g (�

0) given that rank
�bVg

�
= G� S.

Further, Proposition 2 in Appendix A presents the conditions under which optimal

ALS estimation is asymptotically equivalent to ML when one considers the class of models

with singularities in the asymptotic covariance matrix of the distance function covered in

Assumptions 1 and 2. In particular, if (i) the restrictions on � can be written as a set of re-

strictions on the auxiliary parameters implied by the model p(�), i.e., r(�) = r [p(�)] = 0;

(ii) b� has been estimated by a method that is asymptotically equivalent to ML, and sat-
is�es r(b�) = 0; and (iii) the system of implicit relationships g(�;�) = 0 is complete,

then the optimal ALS estimator in equation (23) is asymptotically equivalent to the ML

estimator of � that imposes r(�) = 0. Proposition 2 thus extends the results in Kodde,

Palm and Pfann (1990) to the case of optimal ALS estimation in a singular set-up.
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3.3 Asymptotic least squares estimation of GDTSMs

We now return to the case of the estimation of GDTSMs. In particular, from the results

obtained in the previous section, we have that the optimal estimator of the parameters of

interest of such a model is given byb�CGLS = argmin
�
T [(b�)� �(b�)�]0 bV+

g [(b�)� �(b�)�] s.t. r(�) = 0; (24)

where, by stacking and vectorizing (18), we have that

r(�) = r [p(�)] =vec (P0 
 I)p1(�)� r1; (25)

where p1(�) =vec
�
[a(�) b(�)]0

	
, r1 = vec

�
(0 I)0

�
; and the number of self-consistency

restrictions is S = M � (M + 1). Again, note that self-consistency of the model implies

a set of restrictions on the auxiliary parameters implied by the model p(�), and that

the OLS estimates of the reduced-form parameters already satisfy these self-consistency

restrictions, r(b�) = 0. We refer to this (optimal) estimator as the constrained generalized
least squares (CGLS) estimator. More important, our estimating system g(�;�) = 0 is

complete, which means that the CGLS estimator satis�es the conditions in Proposition 2

under which optimal ALS estimation is asymptotically equivalent to ML estimation.

Unfortunately, the solution to the optimal ALS (i.e., the CGLS) estimator in equation

(24) is not known in closed form because r(�) is not linear in the set of parameters of

interest, �. Still, as noted by Newey and McFadden (1994) and Gourieroux and Monfort

(1995) among others, estimating the model subject to a linearized version of the constraint

delivers an estimator that is asymptotically equivalent to the one that uses the non-linear

constraint. For this reason, we start by considering the (suboptimal) ALS estimator that

uses a consistent estimate of the generalized inverse of Vg(�) as weighting matrix but

that does not impose the restrictions r(�) = 0:

b�GLS = �b�0 bV+
g
b���1 �b�0 bV+

g b� : (26)

We will refer to this estimator as the generalized least squares (GLS) estimator. Then,

the linearized constrained GLS estimator, e�CGLS is de�ned ase�CGLS = argmin
�
T [(b�)� �(b�)�]0 bV+

g [(b�)� �(b�)�] ; (27)

s.t. r(b�GLS) = bR�(b�GLS � �);
where bR� =

@r(b�GLS)
@�0 and the constraint r(�) = 0 has been linearized around the uncon-

strained (GLS) estimate of �, b�GLS. The main advantage of such linearization is that,
since the objective function is quadratic and the restrictions are now linear in the para-

meters of interest, the solution of the estimation problem is known in closed form:

e�CGLS = b�GLS � �b�0 bV+
g
b���1 bR0

�

�bR�

�b�0 bV+
g
b���1 bR0

�

��1
r(b�GLS): (28)
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In particular, this linearized estimator corrects the unconstrained GLS estimates with an

additive term that is a function of the distance r(b�GLS) by which the contraints are not
satis�ed by b�GLS (see chapter 10 in Gourieroux and Monfort, 1995).
However, e�CGLS still does not satisfy the constraints r(�) = 0 exactly, even thoughe�CGLS is asymptotically equivalent to the estimator that uses the non-linear constraint.

This is why we follow Bekaert and Hodrick (2001) in iterating equation (28) when con-

structing our constrained estimates. Speci�cally, we start by obtaining a �rst restricted

estimate of � using equation (28) and linearizing the constraint r(�) = 0 around b�GLS.
Denote this �rst restricted estimate e�(1)CGLS. Then, we substitute the initial unconstrained
estimate, b�GLS, in (28) e�(1)CGLS to obtain a second restricted estimate of �. Denote this sec-
ond restricted estimate by e�(2)CGLS. We repeat this process until the resulting constrained
estimate satis�es the self-consistency restrictions, r(e�(n)CGLS) = 0 within a given tolerance.
In practice, only a few iterations of equation (28) are required.

Finally, we note that one has to be careful not to delete any of the identity equations in

g(�;�) = 0 that de�ne �2 = �2 and �3 = �3 when computing the generalized inverse ofbVg. In particular, g1(�;�) =vec[G(�;�)] withG(�;�) in equation (15) does not identify

�2, and only weakly identi�es �3 (i.e., the innovation parameters of the VAR dynamics

under P only appear in the pricing equations through a (small) Jensen�s inequality term).
Thus, eliminating any of the identities in g2(�;�) = �2��2 or g3(�;�) = �3��3, might
lead to numerical instabilities of the CGLS estimates. We solve this problem by orthog-

onalizing g1(�;�) with respect to g3(�;�), and computing the generalized inverse of the

residual. Undoing this transformation, we have the following generalized inverse of Vg :

V+
g =

0@ V+
g1j3

0 �V+
g1j3
Vg13V

�1
g33

0 V�1
g22

0
�V�1

g33
Vg31V

+
g1j3

0 V�1
g33

1A ;
where V+

g1j3
is a generalized inverse of Vg1j3 = Vg11 �Vg13V

�1
g33
Vg31.

10

4 Discussion of related literature

In this section, we compare our linear regression estimator to three recent approaches

to the estimation of GDTSMs: the maximum likelihood approach of Joslin, Singleton

and Zhu (2011), the minimum-chi-square estimator of Hamilton and Wu (2012), and the

regression-based approach of Adrian, Crump and Moench (2012).

10After some tedious but straightforward algebra, it is easy to show that (i) VgV
+
g Vg = Vg and (ii)

V+
g VgV

+
g = V+

g . However, V
+
g does not satisfy (iii) VgV

+
g = (VgV

+
g )

0 nor (iv) V+
g Vg = (V+

g Vg)
0.

Thus V+
g is a generalized inverse of Vg; but it is not the Moore-Penrose generalized inverse of Vg.
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4.1 Joslin, Singleton and Zhu (2011)

The maximum likelihood (ML) approach has traditionally been considered a natural way

to estimate GDTSMs given that, once one has speci�ed the distribution of the pricing

errors, these models provide a complete characterization of the joint distribution of yields.

However, the solution of the optimization problem involving the maximization of the

density of the yields does not exist in closed form, except in very few speci�c cases.

Consequently, researchers often have to rely on cumbersome optimization techniques to

estimate the parameters of the model, facing diverse numerical issues that are usually

magni�ed by (i) the large number of parameters describing the dynamics of the term

structure of interest rates, (ii) the highly non-linear nature of the likelihood function,

and/or (iii) the existence of multiple local optima (see, for example, the discussions in

Du¤ee and Stanton, 2012; Hamilton and Wu, 2012).

In a recent paper, Joslin, Singleton and Zhu (2011) (JSZ) propose a new canonical

representation of GDTSMs that has substantially lessened many of these numerical chal-

lenges faced when estimating GDTSMs by ML. They note that by focusing on �bond�

state variables that are linear combinations (i.e., portfolios) of the yields themselves, it

is possible to represent the model in a way such that there is a separation between the

parameters driving the state variables under the physical measure, P; and those in the
risk-neutral distribution, Q. Such separation can be exploited in order to simplify the
estimation of the model. In particular, JSZ show that the generic representation of a

GDTSM in equations (1), (2) and (5) is observationally equivalent to a canonical model

with rt = rQ1 + 1
0
Kzt,

zt+1 = 	
Qzt + u

Q
t+1;

where the state variables zt are latent, u
Q
t � iid N(0;�z), 1K is a K-dimensional vector

of ones, the matrix 	Q is in ordered real Jordan form with relevant elements (i.e., eigen-

values) collected in the vector  , and zt follows an unrestricted VAR(1) process under

the historical measure, P.11

By further realizing that ft = P0yt = P0(az + bzzt) where az; bz are the constant and

factor loadings implied by the JSZ canonical model bond pricing, and using results on

invariant transformations of a¢ ne term structure models (see Dai and Singleton, 2000),

JSZ show that a self-consistent model that uses state variables that are linear combinations
11This canonical model is only valid under the assumption of stationarity under Q. While JSZ provide

a second canonical model that is valid when �Q has a unit root, we still prefer to focus on the parameter
rQ1 given its natural economic interpretation and the fact that, in the empirical illustration, we �nd the
largest eigenvalue of �Q is less than one.
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of yields, ft = P0yt, must satisfy

�0 = r
Q
1 � �0c; �0 = 10KD

�1; (29)

�Q = (I��Q)c; �Q = D	QD�1;

where c = P0az, and D = P0bz. As a result, the risk-neutral dynamics of the yield curve

(and therefore, the cross-section of interest rates) is entirely determined by (a) rQ1, the

long-run mean of the short rate under Q; (b)  , the speed of mean reversion of the state
variables under Q; and (c) �; the covariance matrix of the innovations from the VAR. On
the other hand, the VAR dynamics under P remain unrestricted.
Given this separation between risk-neutral and physical dynamics, and given the fact

that the VAR dynamics remain unrestricted, JSZ propose the following two-step estima-

tor. In the �rst step, they estimate � and � by OLS given that, since the VAR dynamics

are unrestricted, OLS recovers the estimates of the conditional mean (Zellner, 1962). In

the second step, they estimate the remaining parameters of the model (rQ1;  , �) via nu-

merical maximization of the likelihood function taking as given the P-dynamics estimates
obtained in the �rst step. Consequently, JSZ report improved convergence and speed of

maximum likelihood estimation over other canonical representations.

We note that it is possible to recover the coe¢ cients of the JSZ canonical representa-

tion,

' =
��
rQ1;  

0�0 ;�vec �(� �)0�	0 ; �vech ��1=2
��0�0

; (30)

using our linear estimation framework. In order to do so, one would start by estimating

the model by either OLS or, preferably, CGLS. Second, note from equation (29) that

	Q is related to the Jordan decomposition of �Q. Therefore, an estimate of 	Q can be

obtained by �nding the real Jordan order form of b�Q: In particular, when the eigenvalues
in 	Q are real and distinct, b Q can be obtained by a simple spectral decomposition ofb�Q = bDdiag(b Q)bD�1. Third, an estimate of the long-run mean of the short rate under

Q can be obtained from brQ1 = b�0 + b�0(I� b�Q)�1b�Q. Fourth, given the structure of the
optimization problems in (16) and (27), the estimates of the P-dynamics parameters of
the state variables implied by our linear framework also coincide with the OLS estimates

of the VAR model in equation (1). Finally, standard errors for the coe¢ cients of the

JSZ canonical representation can be obtained using the Delta method and the results in

Magnus (1985) regarding di¤erentiation of eigenvalues and eigenvectors.

We see three main advantages of our linear regression approach when compared to

JSZ. First, while less computationally demanding, estimates of the JSZ normalization

parameters obtained from the self-consistent GLS estimates of the risk-neutral dynamics

of the bond factors are asymptotically equivalent to those obtained using the JSZ ML

approach (see Proposition 2 in Appendix A).
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Second, we note that by imposing the self-consistency restrictions using equation (29)

and focusing on their canonical representation of a GDTSM, JSZ are e¤ectively repara-

meterizing the model in terms of K � S free parameters as in the proofs of Proposition
1 and 2 in the appendix. Yet, their normalization requires the analysis of several di¤er-

ent subcases depending on whether all the eigenvalues 	Q are real and distinct, there

are repeated eigenvalues or such eigenvuales are complex. In fact, most researchers only

analyze the case of real and distinct eigenvalues (i.e., Du¤ee, 2011; Bauer, Rudebusch

and Wu, 2012; Joslin, Priebsch and Singleton, 2012). On the other hand, one does not

need to a priori determine whether the eigenvalues are real and distinct when estimating

the model using our linear regression approach given that our method will, in practice,

numerically determine which subcase is most empirically relevant.

Third, the improved convergence of the optimization algorithm reported by JSZ relies

on the separation between the parameters driving the state variables under the physical

measure, P; and those in the risk-neutral distribution, Q. However, when there are re-
strictions across the parameters of the P and Q distributions (i.e., exclusion restrictions

on the price of risk parameters), such a separation breaks down, and the ML estimates of

the P parameters are no longer recovered by the OLS estimates of (1). Instead, one has
to maximize the likelihood function with respect to all of the parameters of the model

in a single step, thus losing the main computational advantage of the JSZ approach. In

contrast, we show below (see section 6.1) that our linear approach remains computation-

ally tractable even when one considers the estimation of GDTSMs subject to equality

constraints on the structural parameters.

4.2 Hamilton and Wu (2012)

An alternative estimation method to ML estimation is the minimum-chi-square estimation

proposed by Hamilton and Wu (2012) (HW). These authors propose to minimize the

value of a Wald test statistic for the null hypothesis that the restrictions implied by the

no-arbitrage model are consistent with the data. That is, they propose to minimize a

quadratic form in the di¤erence between the estimated reduced-form parameters and the

reduced-form coe¢ cients implied by the no-arbitrage model:

b'HW = argmin
'
T [b�HW � pHW (')]0 bV�1

�HW
[b�HW � pHW (')] ; (31)

where ' is the vector of canonical parameters in equation (30), and where the reduced-

form and implied coe¢ cients, b�HW and pHW (') respectively, have the subscript HW as

a reminder that the set of reduced-form estimates b�HW used in this estimation method

are not necessarily the same as the ones employed when computing the linear estimator

discussed in section 2.3. For example, the set of bonds used when estimating the model
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using the Hamilton and Wu (2012) approach does not need to be the same as the set

employed when using our regression-based methods (we return to this point below).

It is thus straightforward to realize that the HW minimum-chi-square estimator falls

within the ALS framework as well. In their case, the distance function is linear in the

set of reduced-form coe¢ cients, and the optimal weighting matrix is given by the inverse

of the variance of the reduced-form parameters which, if �HW is estimated by maximum

likelihood, coincides with the (reduced-form) information matrix. We note that, in fact,

�HW can be viewed as a reparameterization of � above in terms of G�S free reduced-form
coe¢ cients after imposing the self-consistency restrictions as in the proof of Proposition

2 in Appendix A. Consequently, bV�HW is, in general, invertible and b'HW thus optimal.

Further, HW show that their estimation approach is asymptotically equivalent to ML

estimation of ', which is a consequence of satisfying the Kodde, Palm and Pfann (1990)

conditions under which an ALS estimator is asymptotically equivalent to the ML estimator

(see section 3.1).

We note that the CGLS estimator in equation (27) can also be interpreted as minimiz-

ing the value of a Wald test statistic for the null hypothesis that the restrictions implied

by the no-arbitrage model are consistent with the data (within the set of ��s that imply

a self-consistent model). In particular, the criterion function of our optimal linear estima-

tor resembles a Wald statistic for the null hypothesis that g(�;�) = (�)� �(�)� = 0
which is, in fact, a reparameterization of the null hypothesis considered in HW. Still, it

is worth pointing out, again, that the main advantage of our parameterization is that

the distance function is linear in � and, thus, the solution to the minimization of the

chi-square criterion function can be obtained in closed form.

The advantages of our method with respect to the HW approach are similar to the

advantages with respect to the ML estimator described in the previous section. For exam-

ple, the computational tractability of the HW method is lost when there are restrictions

across the parameters of the P and Q distributions, as one has to minimize (31) directly.
Moreover, most of the numerical advantages of the HW approach with respect to direct

maximization of the likelihood of the model come from considering exactly identi�ed (un-

restricted) models (i.e., models where the number of linear combinations of yields used

in the estimation is equal to N = M + 1). That is, one has to discard a lot of the

information contained in the term structure of interest rates and, by thus reducing the

number of bonds used in the estimation of the model, it is possible to incur potentially

large e¢ ciency losses. We will illustrate this point below in a Monte Carlo experiment.
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4.3 Adrian, Crump and Moench (2012)

In a recent paper, Adrian, Crump and Moench (2012) (ACM) propose a regression-based

approach to the estimation of GDTSMs that, as with our ALS approach, completely avoids

numerical optimization. Using observable pricing factors, (i.e., principal components of

yields), and focusing on bond excess holding period returns, they develop a four-step

OLS estimation method. In their �rst step, they estimate the VAR(1) process in equation

(1) to obtain �; � and �, and decompose pricing factors into predictable components

and innovations. In the second step, they estimate the exposures of bond returns to (a)

lagged levels of pricing factors ft�1, and (b) contemporaneous pricing factor innovationsbvt. In the third step, they estimate the market prices of risk parameters, �0 and �1,
from a cross-sectional regression of exposures to contemporaneous pricing factors (i.e.,

a la Fama-MacBeth). Lastly, they recover parameters of the short rate, �0 and �1, by

regressing the short rate on the pricing factors.

We note that the ACM di¤ers from our method (and JSZ and HW for that matter) in

the distributional assumption of the pricing errors. In particular, ACM assume uncorre-

lated pricing errors on excess returns, instead of uncorrelated pricing errors on the yields.

As shown in their paper, when yield pricing errors are uncorrelated, the model has the un-

desirable feature of generating return pricing errors that are cross-sectionally and serially

correlated, thus implying the existence of bond return predictability that is not captured

by the pricing factors. While (for space considerations and given that the assumption of

uncorrelated pricing errors on excess returns is not standard in the literature) we do not

explore the ACM assumption on the pricing errors in this paper, we note that it is possi-

ble to handle autocorrelated yield errors within our framework given that OLS estimates

of the reduced-form parameters remain consistent and asymptotically normal under such

an assumption. In particular, one would simply need to estimate the covariance of the

reduced-form parameters in (21) using a method that is robust to autocorrelation (e.g.,

using Newey and West, 1987).

More importantly, we show in Appendix B how to reinterpret the ACM estimator

within the ALS framework, thus easing the comparison with our proposed linear estima-

tors. By doing so, we �nd three main advantages of our linear regression approach with

respect to ACM. First, we show how to impose self-consistency of the model and how

to obtain the parameters of the JSZ normalization (features absent in the ACM frame-

work). Second, our regression approach is likely to provide asymptotic e¢ ciency gains

with respect to ACM, given that they use an identity weighting matrix and do not impose

self-consistency of the model. Finally, we show in the appendix that the system of implicit

relationships that de�nes the ACM estimator is not complete (the number of reduced-

form parameters is larger than the dimension of the distance function). This implies
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that their approach will not be equivalent to maximum likelihood estimation, even if the

self-consistency restrictions were imposed and an optimal weighting matrix was chosen.12

5 Monte Carlo simulations

In this section, we carry out a Monte Carlo study to assess the �nite-sample properties

of the proposed ALS estimators of the parameters of GDTSMs. In addition, we also

compare our proposed OLS and CGLS estimators to two of the main approaches to the

estimation of GDTSMs described above: the maximum likelihood estimator of Joslin,

Singleton and Zhu (2011) and the minimum chi-square estimator of Hamilton and Wu

(2012). We leave for further research a comparison with the linear estimator of Adrian,

Crump and Moench (2012), because parameter estimates obtained using this approach

are not directly comparable to the JSZ, HW and ALS estimators given the di¤erent

distributional assumption on the measurement errors.

5.1 Design

We simulate 10,000 samples of 25 years of quarterly interest rates (T = 100), ranging

from one quarter to 15 years (N = 60), from a one-factor model using equations (1), (2)

and (3) above. We focus on a one-factor model for its simplicity. For example, note that

in the one-factor case there is no need to consider complex or repeated eigenvalues when

estimating the model subject to the JSZ normalization. Still, we can illustrate most of

the properties of our estimators within this simple framework.

To ensure that self-consistency is satis�ed in the simulated data, we focus on the

JSZ canonical representation of a GDTSM. That is, we use �0; �; �Q and �Q de�ned in

equation (29), and the following parameter values: rQ1 = 0:03; 	Q = 0:975; � = 0:0015;

� = 0:9; � = 0:003; and �� = 0:0015. Such parameter values are chosen to match

the empirical characteristics of our data set. In order to capture the level factor that

characterizes yield curve data, we choose ft to be equal to the one-year yield, which is

assumed to be observed without measurement error. That is, we take P = e4 where ej is

a N � 1 vector with a one in the jth position and zeroes in the other. Finally, we draw
starting values for the one-year yield (i.e., the factor) from its stationary distribution.

5.2 Results of the simulations

Table 1 reports the results of our Monte Carlo exercise. In this table, OLS and CGLS refer

to the linear ALS estimators de�ned in equations (16) and (27), respectively; HW-ei and

12We also note that the use of the ALS framework greatly simpli�es obtaining the asymptotic distrib-
ution of their linear estimator.

22



HW-oi refer to the exactly identi�ed and overidenti�ed minimum-chi-square estimators

in HW; and, �nally, ML refers to the maximum likelihood estimator proposed in JSZ.13

In the exactly identi�ed case, the HW estimator uses only two points of the yield curve.

In particular, we choose to match both the one- and ten-year yields. In addition, as is

customary in the literature, we use only a selected set of bond yields when computing the

HW and JSZ estimators. In particular, we use yields of maturities two, four, eight, twelve,

twenty, forty and sixty quarters when estimating the model using these two methods.14

On the other hand, we note that our linear estimator uses all the information available in

the term structure of interest rates. Therefore, in order to provide a relevant bechmark

for our linear framework and to gauge the e¢ ciency loss from discarding data, as tradi-

tionally done in the literature, we also compute the ML estimates that use the full span

of maturities (ML-all).

The results reported in Table 1 are as follows: Mean, the mean (across Monte Carlo

replications) of the estimate; Std, the standard deviation of the estimate; EStd, the sample

mean of the estimated asymptotic standard error; RMSE, the root-mean-squared error of

the estimate; and CINT-95, the proportion of times that the true parameter value lies

within the 95 per cent asymptotic con�dence interval.

Our simulations show that, in terms of bias, the CGLS approach accurately estimates

the parameters describing the dynamic evolution of the factor under the risk-neutral

measure, Q. On the other hand, the OLS estimates of the canonical parameters seem to

be estimated subject to a small downward bias. The bias in the estimated P-parameters,
� and �, is sizable, which is consistent with Bauer, Rudebusch and Wu (2012) and

their study of the properties of the HW and JSZ estimators. We note that this is not a

problem exclusive to our methodology. In fact, the six estimation methods considered in

this Monte Carlo study recover exactly the same OLS estimates of the parameters driving

the P-dynamics of the factors. In consequence, our linear estimators will also su¤er

from the well-known problem that OLS estimates of autoregressive parameters tend to

underestimate the persistence of the system in �nite samples.

Choosing an optimal weighting matrix and imposing the self-consistency restrictions

clearly matters. First, the CGLS estimator has lower variability than the OLS estimator.

For example, the standard error of the CGLS estimate of �Q is larger than the one

corresponding to the OLS estimate by a factor of �ve. Second, the coverage rate of the

CGLS estimator is very close to the 95 per cent nominal rate. In contrast, the fact that

the OLS estimated standard errors slightly understate the true variability of the estimate,

13We use the estimates of the canonical parameters from our OLS approach to initialize the optimization
algorithm.
14This is the same set of maturities considered by JSZ, augmented by the sixty-quarter (�fteen-year)

bond yield.
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combined with the slight bias in this estimator, results in non-trivial di¤erences between

the empirical coverage rate and the nominal rate of 95 per cent.

Similarly, discarding bonds when estimating the model has an important e¤ect on

the e¢ ciency of the estimator. For example, the standard error of the HW-ei (HW-

oi) estimator of rQ1 more than triples (doubles) the standard error of the corresponding

CGLS (or ML-full) estimate. A similar pattern can be observed when considering the ML

estimator of the GDTSM parameters. In fact, the loss of e¢ ciency incurred from focusing

on the HW exactly identi�ed estimator is similar to the loss of e¢ ciency incurred from

using an identity matrix (versus using the optimal estimator) within our linear framework.

On the other hand, and as predicted by asymptotic theory, the properties of our CGLS

estimator are almost identical to the properties of the ML estimator that uses the full set

of bonds: a result that we �nd particularly reassuring.

Finally, we brie�y analyze the �nite-sample properties of the ALS overidenti�cation

test. Speci�cally, we have that the optimized value of the ALS criterion function has an

asymptotic �2 distribution with degrees of freedom equal to the number of overidentifying

restrictions (G � K). We �nd that this test has a slight tendency to under-reject. In
particular, we �nd that, in our simulations, the empirical rejection rate of a 5 per cent

(10 per cent) con�dence-level overidenti�cation test is 2.8 per cent (6.9 per cent).

6 Extensions

6.1 Estimation subject to equality constraints

Several recent studies in this literature have considered estimation of GDTSMs subject to

certain equality constraints on the structural parameters, including the case where some

of the elements of the prices of risk are set to zero (see, e.g., Cochrane and Piazzesi,

2008; Bauer, 2011; Bauer and Diez de los Rios, 2012; Joslin, Priebsch and Singleton,

2012). There are two main reasons to impose such restrictions on the prices of risk. The

�rst concerns the trade-o¤ between model misspeci�cation and sampling uncertainty. As

noted by Cochrane and Piazzesi (2008), the risk-neutral distribution can provide a lot

of information about the time-series dynamics of the yields. For example, if the price

of risk were zero (i.e., agents were risk-neutral), both physical and risk-neutral dynamics

would coincide and we could obtain estimates of the parameters driving the time-series

process of yields exclusively from the cross-section of interest rates. Since the risk-neutral

dynamics can be measured with great precision, one could reduce the sampling uncertainty

by following this approach. On the other hand, when the prices of risk are completely

unrestricted, no-arbitrage restrictions are irrelevant for the conditional distribution of

yields under the physical measure, and thus the cross-section of bond yields does not
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contain any information about the time-series properties of interest rates (see JSZ). In

this case, notice above that the estimates of the physical dynamic parameters, � and

�, coincide with the OLS estimates of an unrestricted VAR(1) process for ft. Imposing

restrictions on the prices of risk can thus be understood as a trade-o¤ between these two

extreme cases.

The second reason concerns the estimated persistence of the data. When the prices

of risk are completely unrestricted, the largest eigenvalue of the physical measure � es-

timated from the VAR(1) representation in equation (1) is usually less than 1.00, with

the result that expected future bond yields beyond ten years are almost constant.15 How-

ever, the existence of a level factor in the cross-section of interest rates implies a very

persistent process for bond yields under the risk-neutral measure. The largest eigenvalue

of �Q thus tends to be close to or equal to one. By imposing restrictions on the prices

of risk, we will be e¤ectively pulling the largest eigenvalue of � closer to that of �Q so

that the physical time-series can inherit more of the high persistence that exists under

the risk-neutral measure. In fact, motivated by this persistence issue, Joslin, Priebsch

and Singleton (2012) directly force the largest eigenvalue of � to be equal to the largest

eigenvalue of �Q.

By having already discussed how to estimate GDTSMs subject to self-consistency

restrictions, it is straightforward to see that estimation subject to (additional) equality

constraints can naturally be handled in our set-up. In the case of optimal ALS estimation,

for example, one just needs to (i) add a new set of restrictions to the estimation problem

in (27) and (ii) use the iterative procedure described in section 3.3.

6.2 Unspanned risks

An important development in this literature is the role of unspanned variables.16 A

variable is unspanned if its value is not related to the contemporaneous cross-section of

interest rates but it does help forecast both future excess returns on the bonds (i.e., term

structure risk premia) and future interest rates. That is, a variable is unspanned if its

bond yield factor loadings are equal to zero, yet it helps in explaining the dynamics of

interest rates.

Such unspanned variables can be accommodated in our framework in the following

way. Speci�cally, let the pricing factors ft = (f 01t; f
0
2t)

0 be partitioned into spanned factors

15Problems with measuring the persistence of the term structure physical dynamics given the short
data samples available have been noted by Ball and Torous (1996), Bekaert, Hodrick and Marshall (1997),
Kim and Orphanides (2005), Cochrane and Piazzesi (2008), Bauer (2011), Bauer, Rudebusch and Wu
(2012), Du¤ee and Stanton (2012), and Joslin, Priebsch and Singleton (2012).
16See, for example, Cochrane and Piazzesi (2005, 2008), Kim (2007), Cooper and Priestly (2008),

Ludvigson and Ng (2009), Orphanides and Wei (2010), Du¤ee (2011), Chernov and Mueller (2012),
Joslin, Priebsch and Singleton (2012).
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(f1t) and unspanned factors (f2t), and let �; �Q and �Q be partitioned accordingly. If

(i) the short rates in each country are a¢ ne functions of f1t only (�2 = 0) and (ii) we

set the right, upper block of the autocorrelation matrix �Q to zero (�Q
12 = 0), then f2t

will be unspanned by the cross-section of interest rates. Absent these two assumptions,

no-arbitrage pricing would imply that bond yields would be a¢ ne functions of all ft (cf

equation (7) above). While the no-spanning assumptions imply that it is not possible to

identify �Q2 , �
Q
21 nor �

Q
22; given that they a¤ect neither the prices of the bonds nor their

risk premia (see JPS for additional details), the linear estimator in section 2.2 (as well

as its optimal implementation), can still be easily adapted to recover estimates of �1; �
Q
1

and �Q
11 from the coe¢ cients of a cross-sectional regression of yields on f1t.

Our estimation method reveals, however, that caution should be exercised when se-

lecting the factors that explain the cross-section of interest rates. As noted in section 3.1,

inference is based on the assumption that G�(�
0;�0) = ��(�0) has a full rank struc-

ture. If we wrongly assume that a factor is spanned when, in fact, it is not, we have

that the estimates of its factor loadings converge to a vector of zeroes. Consequently,

rank
�
G�(�

0;�0)
�
< K and the asymptotic approximations to the distribution of the

ALS estimator (both OLS and GLS-type implementation) become non-standard. In fact,

standard inference still breaks down when the b�s are close to zero (i.e., G�(�
0;�0) is

almost of reduced rank).17 This can occur, for example, when there are �hidden�factors

in the sense of Du¤ee (2011): the factor j�s loadings are in the neighborhood of zero, so

their tiny contemporaneous e¤ect on yields can be lost in the noise that contaminates

observed yields. Further, since (the optimal implementation of) our method delivers an

estimator that is equivalent to the ML estimator, we suspect that ML estimates of the

parameters of the GDTSM might also be subject to weak identi�cation concerns. This

situation mirrors the problems that plague the statistical inference in linear factor models

when the betas are close to or equal to zero, or the matrix of betas has a near-reduced

rank (see Kan and Zhang, 1999; Kleibergen, 2009; Beaulieu, Dufour and Khalaf, 2012).

Since it is well documented that three principal components (i.e., level, slope and curva-

ture) are su¢ cient to explain at least 99 per cent of the variation in yields (Litterman and

Scheinkman, 1991), one might expect any other variable added to the regression of yields

on these three principal components to have very little (additional) explanatory power for

the cross-section of interest rates. This suggests that any variable beyond the �rst three

PCs should be modelled as unspanned, in order to avoid non-standard asymptotics of the

17As noted by Magnusson and Mavroeidis (2010), expanding G�(b�;�0) around the true value �0, we
have that G�(b�;�0) is approximately equal to G�(�0;�0)+

p
T	G, where 	G is a normally distributed

matrix. When G�(�0;�0) has full rank, G�(b�;�0) is approximately constant because pT	G tends to
vanish. Hence, G0

�(b�;�0)V�1
g (�0)G�(b�;�0) converges to a non-random invertible matrix. However, such

an approximation fails when the matrix G�(�0;�0) is small compared to
p
T	G.
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parameter estimates. An alternative interesting avenue, left for further research, would

be the use of identi�cation-robust methods in the estimation of term structure models.

For example, Magnusson (2010) presents ALS versions of the identi�cation-robust tests

proposed by Stock and Wright (2000) and Kleibergen (2005) that could be used in our

set-up.

6.3 GDTSMs with lags

In a recent paper, Joslin, Le and Singleton (2013) extend the family of GDTSMs to ac-

commodate higher-order dynamics (i.e., beyond the VAR(1) model in equation (1)) in the

parameterization of the distribution of yields under P, while preserving the parsimonious
factor representation of yields. These authors assume that the factors ft follow a VAR(p)

under the physical distribution, and a VAR(1) under the risk-neutral measure. Since

this can be achieved by assuming that the lags of ft are, in essence, unspanned from the

cross-section of interest rates, our linear estimator can still be used to estimate this new

class of GDTSMs with lags.

6.4 Autocorrelation of the residuals

Our framework can be easily adapted to handle autocorrelation in the measurement er-

rors and/or overlapping in the dynamics under the physical measure. For example, both

Cochrane and Piazzesi (2008), and Bauer and Diez de los Rios (2012) focus on annual

dynamics of yields estimated using monthly data, which induces a moving average struc-

ture on the residuals of the VAR dynamics in equation (1). Similarly, and as noted above,

ACM show that uncorrelated pricing errors on excess returns deliver autocorrelated pric-

ing errors on yields. As a di¤erence with maximum likelihood estimation, our framework

can naturally handle the presence of autocorrelation in the residuals as long as we es-

timate the covariance of the reduced-form parameters using a method that is robust to

autocorrelation, i.e., using Newey and West (1987).

6.5 Temporal aggregation

Interest rates evolve on a much �ner time scale than the frequency of observations typically

employed by empirical researchers. While the sampling frequency is often given because

collecting data is very expensive in terms of time and money (e.g., output or labor force

statistics), this is no longer the case for �nancial prices. In fact, for interest rates (i.e., bond

prices), currently the sampling frequency is, to a large extent, chosen by the researchers.

Yet, in the context of the estimation of time-series models, Marcellino (1999) and Diez de

los Rios and Sentana (2011), among others, show that this choice has an impact on the
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properties of the estimators/tests considered.

In our case, researchers also need to choose which bonds to use in the estimation

of GDTSMs. Under our estimation framework, we have that (i) the an and bn�s can

be considered as time-series processes indexed by maturity, and (ii) we need the full

set of maturities for n = 1 to N . This implies that this second choice faced by the

researcher is essentially equivalent to choosing a �cross-sectional�or risk-neutral frequency

of observation. Thus, paralleling the case of time-aggregation under P, we note that this
second choice also has consequences on the properties of the GDTSM estimators.

A �rst example of how this choice might a¤ect the statistical properties of the GDTSM

estimators is related to the e¢ ciency of the parameter estimates. In particular, we note

that using the full spectrum of maturities (as prescribed by our methodology) versus

using only a sparse selection of yields (as usually done in the literature), or increasing

the number of bonds in the estimation, might deliver e¢ ciency gains. To see why this

is the case, we can partition g(�;�) = [g01(�;�) g
0
2(�;�)]

0= 0, and note that, in general,

Vg(�
0) = avar

hp
Tg(b�;�0)i and Vg1(�

0) = avar
hp
Tg1(b�;�0)i are not necessarily the

same. Hence, the estimator that uses only a subset of the number of bonds (and therefore,

just a subset of the distance functions) and a weighting matrix given by V+
g1
will not be

optimal in this set-up, even if it imposes the self-consistency restrictions.

A second example is related to the identi�cation of the parameters driving the risk-

neutral dynamics. Iterating the pricing equations for bond loadings in (7), we have that

B0n+j = B
0
n

�
�Q�j +B0

j j � 1: (32)

Now assume that, from the N bonds in the original sample, only the jth maturities are

retained,
n
y
(nj)
t

oN
n=1

; where j is the frequency of (cross-sectional) aggregation. Equation

(32) implies that, if we were to estimate this model using this reduced set of bonds, we

could only identify the matrix zQ=
�
�Q
�j
. However, when �Q has complex eigenvalues,

there are several matrices �Q that deliver the same zQ (i.e., there is no bijection between
�Q and zQ).18 This problem, known as aliasing (see, e.g., Phillips, 1973; Hansen and

Sargent, 1981; Bergstrom, 1984), implies that it is not possible to distinguish between pa-

rameter structures generating oscillations under Q at frequencies higher than the interval
chosen for the maturities of bonds (i.e., the �cross-sectional� frequency). For example,

it will not be possible to identify the parameters driving the Q-dynamics at the monthly
frequency if we only have interest rates with quarterly maturities. We leave the study of

18To see this point, let  = � (cos! � i sin!) denote a complex eigenvalue of �Q and its conjugate.
By De Moivre�s theorem, we have that  n = �n (cosn! � i sinn!). Now consider the following complex
number in polar form e = � (cos e! � i sin e!) with e! = !+2�=n: Using standard trigonometry results, we
have that  n = e n. Thus, two matrices �Q and e�Q with the same eigenvectors, and eigenvalues given
by  and e ; respectively, will deliver the same zQ.
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the econometric issues generated by the temporal aggregation and aliasing problem under

the risk-neutral measure for further research, since it is beyond the scope of this paper.

6.6 Small-sample standard errors and bias corrections

Given the computational simplicity of our new linear estimation method, (small-sample)

standard errors can be computed using a parametric bootstrap similar to those in JSZ

and Hamilton and Wu (2012). The proposed method is as follows:

Step 1 Initialize the arti�cial sample j of bond factors at their value on the �rst date

from the original sample: f (j)1 = P0yo1.
19

Step 2 Generate a sequence
n
v
(j)
t

oT
t=2
ofN(0; b�) variables, and then recursively generate

a path of the bond factors f (j)t = b�+b�f (j)t�1 + v(j)t for t = 2; :::; T .

Step 3 Generate a sequence of
n
�
(j)
t

oT
t=1
ofN(0; b
) variables, and then generate a path of

the term structure for the original sample size, T , as y(j)t = a(b�Q; b�Q; b�) + b(b�Q)f (j)t +

�
(j)
t for t = 1; :::; T .

Step 4 Compute an estimate of � for the arti�cial sample j using the linear method

described above.

These four steps are repeated J times and small-sample standard errors for the para-

meters of the model can be computed as the standard deviation of the arti�cial sequence

of bootstrap parameter estimates.

Additionally, since the bond factors are linear combinations of yields, the OLS esti-

mates of the VAR dynamics are likely to be subject to the small-sample biases associated

with the extreme persistence found in interest rates (see, i.e., Beckaert, Hodrick and Mar-

shall, 1997; Bauer, Rudebusch and Wu, 2012). Such a problem can be easily dealt with

by adapting step 2 of our bootstrap. For example, one could correct these OLS estimates

using the analytical formula of Pope (1990), using the bootstrap-after-bootstrap method

of Kilian (1998) or using the indirect inference estimator of Bauer, Rudebusch and Wu

(2012).

7 Decomposing Canadian yields

In this section, we use the iterative procedure outlined in section 3.3 to estimate a three-

factor model and decompose the Canadian ten-year zero-coupon bond yield into an ex-

pectations and term premium component. This three-factor speci�cation is designed to
19Consistent with the modelling approach of JSZ, one needs to assume that the matrix of �portfolio

weights,�P, is known and, therefore, remains �xed across bootstrap replications.
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capture all the economically interesting variation in both the cross-section of interest rates

and bond risk premia, and resembles the Cochrane and Piazzesi (2008) model of the U.S.

yield curve.

Our data set consists of end-of-quarter observations over the period March 1986

(1986Q1) to June 2012 (2012Q2) of the term structure of Canadian zero-coupon bond

yields obtained from the Bank of Canada website.20 We consider the full spectrum of

maturities from one quarter to �fteen years. By focusing on the Canadian bond market,

we expect to alleviate some data-snooping concerns related to the fact that most of the

research on yield curve modelling and bond premia focuses on U.S. data.

In order to capture the cross-sectional variation of bond yields, we identify our �rst two

factors with the �rst two principal components of the term structure of Canadian interest

rates. These two factors explain 99.8 per cent of the variation of yields, and have the

traditional interpretation of level and slope (Litterman and Scheinkman, 1991). Curvature

(i.e., the third principal component) explains only 0.15 per cent of the variability on bond

yields. Thus, motivated by parsimony and the discussion on weak identi�cation in section

6.2, we drop the curvature from our study.

Our third factor, on the other hand, builds on the recent evidence documenting the

existence of unspanned or nearly spanned factors that are not related to the contempora-

neous cross-section of interest rates, but that do help forecast both future excess returns

on the bonds (i.e., term structure risk premia) and future interest rates (see Cochrane

and Piazzesi 2008, and Du¤ee, 2011). In particular, we include a return-forecasting factor

that is similar in spirit to the one presented in Cochrane and Piazzesi (2005), and that

captures all of the economically interesting variation in one-year excess returns for Cana-

dian bonds of all maturities. While this factor can be written as a linear combination

of yields and it is fully spanned by bond yields, we �nd that it has very little (if any)

explanatory power for the cross-section of interest rates once level and slope are included

in the set of factors. Thus, once again motivated by the discussion on weak identi�cation

in section 6.2, we treat the Canadian return-forecasting factor as fully unspanned for the

purposes of estimation.

Before turning to the estimates of the model and the decomposition of the Canadian

bond yields, we �rst motivate the choice of such a Cochrane-Piazzesi-like factor for the

Canadian yield curve.

20Canadian zero-coupon yields are constructed using an exponential spline model (see Bolder, John-
son and Metzler, 2004) for details. The data can be obtained from the Bank of Canada website at
http://www.bankofcanada.ca/rates/interest-rates/bond-yield-curves/.
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7.1 A return-forecasting factor for Canada

Cochrane and Piazzesi (2005) (CP) show that (i) a linear combination of forward rates

predicts annual bond excess holding period returns with R2 values as high as 0.44, (ii) this

single factor has a tent-shaped structure, (iii) this factor captures all of the economically

interesting variation in one-year excess returns for bonds of all maturities.

In order to investigate the existence of a similar factor in the Canadian term structure

of interest rates, we start by regressing the average (across maturity) annual excess returns

at time t+ 4 on forward rates at time t:

1

14

15X
n=2

rxt!t+4;n = 0 + 
0gt + �t+4; (33)

where rxt!t+4;n � log (Pt+4;n�4=Pt;n) � yt;4 is the annual bond excess holding period
returns, and gt is a vector of log forward (annual) interest rates, g

(n!n+4)
t = pt;n�pt;n+4.21

Given the overlapping nature of the regression equation (33), we follow CP in computing

Newey and West (1987) standard errors with six lags.22

The �rst row in Table 2 reports the estimated values of 0 and  for the original

choice of �ve forwards in CP (g(n!n+4)t for n = 0; 4; 8; 12; 16). While the predictability

is weaker than in the original CP paper (i.e., R2 = 0:20 versus 0:44), the Wald test for

the hypothesis that  = 0 cannot be rejected at standard con�dence levels. However, the

regression coe¢ cients present an M shape that is suggestive of multicollinearity. For this

reason, we follow Sekkel (2011), who tests the robustness of the CP factor across several

international markets, in using only the one-, three-, and �ve-year forwards (g(n!n+4)t for

n = 0; 8; 16) when estimating equation (33). Such results are reported in the second row

of Table 2. In this case, the M pattern in the estimated coe¢ cients disappears, and we

recover a tent-shaped forecasting factor. Yet, the R2 decreases to 0.17 given the loss of

information from reducing the number of forecasting instruments.

Note that neither the CP nor the Sekkel (2011) speci�cations incorporate the infor-

mation that long-dated forwards potentially contain. However, rather than using the

full set of forward rates, which could lead again to potential collinearity issues, we focus

on one speci�cation of equation (33) that has only �ve forward rates as regressors. In

particular, we use the one-, two-, �ve-, ten- and �fteen-year forward rates (g(n!n+4)t for

n = 0; 4; 16; 36; 56) as our set of regressors. By doing so, the R2 increases to 0.46 and

the estimated regression coe¢ cients have the desired tent-shaped structure.23 Thus, we

21In particular, g(n!n+4)
t is the interest rate at time t for loans between time t+ n and t+ n+ 4:

22The results remain the same when we use Hansen and Hodrick (1980) standard errors with three lags
(i.e., the order of the MA process of the error term �t+4 induced by the overlapping problem).
23Following CP, we conduct two robustness exercises. First, in order to address the concern that forward

rates on the right-hand side show secular decline over the sample studied, we analyze a speci�cation that
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conclude that the information contained in long-dated forwards seems to be important

for explaining time variation in Canadian bond premia.

We also verify that this new version of the CP factor captures all of the economically

interesting variation in one-year excess returns for Canadian bonds. We do so by following

CP once more in comparing the R2 of an unrestricted regression of individual bond excess

holding period returns with the R2 of the predictive regression that imposes the one-factor

structure in expected excess returns. While unreported for the sake of space, we �nd that

the R2�s from both regressions are essentially the same, which indicates that the single-

factor structure in expected returns does little damage to its forecast ability. In other

words, this Canadian CP factor captures all of the economically interesting variations in

one-year excess returns for bonds of all maturities. For these reasons, we use this version

of the return-forecasting factor in the remainder of the paper.

7.2 Bias corrections and parameter restrictions

When the prices of risk are completely unrestricted, the estimates of P-parameters coincide
with the OLS estimates of an unrestricted VAR(1) process for ft and, therefore, su¤er

from the well-known problem that OLS estimates of autoregressive parameters tend to

underestimate the persistence of the system in �nite samples. Consequently, the largest

eigenvalue of � estimated from the VAR(1) representation under P in equation (1) is
usually less than 1.00, with the result that expected future bond yields beyond ten years

are almost constant.

We tackle this persistence bias in two ways. First, we follow Bauer, Rudebusch and

Wu (2012) in replacing the reduced-form OLS estimates of the VAR(1) equation in (1)

with bias-corrected estimates. Speci�cally, we use the analytical approximation for the

mean bias in VARs presented in Pope (1990) with the adjustment suggested by Kilian

(1998), in order to guarantee that the bias-corrected estimates are stationary. Second, we

follow Cochrane and Piazzesi (2008) in forcing one-year expected excess returns to have

a single-factor structure, so that time variation in bond premia is driven (solely) by the

return-forecasting factor. Thus, by pulling � to be close to �Q, we expect the dynamics

under P to inherit more of the high persistence that characterizes the Q-measure.
We now analyze the Cochrane-Piazzesi restrictions in detail. We note that the m-

period excess return for holding an n-period zero-coupon bond is given by

Etrx
(n)
t!t+m � JIT +B0n�4

h
�
(m)
0 + �

(m)
1 ft

i
; (34)

uses spread information, g(n!n+4)
t � rt. Second, in order to address the concern that the price at t

is common to both the left- and right-hand sides of the regression, we run the regression in equation
(33) using forecasting instruments measured at time t� 1. In both cases, the forecasting power and the
tent-shaped pattern are preserved.
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where JIT is a (constant) Jensen�s inequality term and

�
(m)
0 =

m�1X
j=0

h
�j��

�
�Q
�j
�Q
i
; (35)

�
(m)
1 = �j �

�
�Q
�j
; (36)

where it is easy to see that �(m)0 = �0 and �
(m)
1 = �1 for m = 1. Thus, the risk premia on

holding a bond for a year is linear in the factors, ft, and have three terms: (i) a Jensen�s

inequality term; (ii) a constant risk premium related to �(m)0 ; and, (iii) a time-varying

risk-premium component where time variation is governed by the parameters in matrix

�
(m)
1 . Further, when agents are risk-neutral (i.e., � = �Q and � = �Q), we have that

�
(m)
0 and �(m)1 are equal to zero for any holding period, m. Consequently, �(m)0 and �(m)1

play the role of the price of risk parameters when focusing on a holding period m > 1.

Note that the single-factor structure of annual bond premia implies that the return-

forecasting factor is the only variable driving Etrx
(n)
t!t+4. This can be achieved by means of

exclusion restrictions on the matrix �(4)1 . For example, if we assume that ft = (pc1t; pc2t; xt)
0;

where pcjt is the jth principal component of yields and xt is the return-forecasting factor,

the single-factor expected return model requires the �rst two columns of �(4)1 to be equal

to zero. In fact, we follow Cochrane and Piazzesi (2008) in going a step further and

assuming that only the level risk is priced. This imposes the additional restriction that

the last two elements of �(4)0 and the last two rows of �(4)1 are equal to zero. That is, we

have that the multi-period prices of risk in (35) and (36) take the following form:

�
(4)
0 =

0@ �
(4)
01

0
0

1A ; �
(4)
1 =

0@ 0 0 �
(4)
13

0 0 0
0 0 0

1A :
Note that both the eigenvalue and exclusion restrictions on �(4)0 and �(4)1 are non-linear

with respect to the parameters of the GDTSMs. Consequently, we will use the iterative

procedure described in section 3.3 to obtain a set of parameter estimates that satis�es

the self-consistency, and Cochrane-Piazzesi restrictions at the same time. We show below

that, in fact, these restrictions cannot be rejected by the data.

Finally, we note that, while similar in spirit to the model developed by Cochrane and

Piazzesi (2008) for the U.S. term structure, our approach di¤ers from theirs in several

aspects. First, they focus directly on the annual dynamics of the factor, and therefore

their exclusion restrictions on the prices of risk can be viewed as linear restrictions on the

underlying parameters of the model. Second, we do not include curvature in our study

due to the concerns of weak identi�cation of the parameters driving the Q-dynamics of
such a factor. Third, we exploit the information contained in long-dated futures when
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computing our return-forecasting factor. Fourth, we estimate the model subject to not

only restrictions on the prices of risk, but also to self-consistency restrictions.

7.3 Parameter estimates

Table 3 reports the parameter estimates of our three-factor GDTSM and, speci�cally,

panel a presents the estimates of the risk-neutral parameters under the JSZ normalization.

The largest eigenvalue of �Q is almost equal to one (0.9987), a feature needed to explain

the existence of the level factor in interest rates. Speci�cally, long rates are essentially

expected future short-term interest rates under the risk-neutral measure corrected by a

Jensen�s inequality term. Hence, the very persistent dynamics under Q imply that shocks
to the �rst principal component raise expected future rates in parallel, making sense of the

level factor of interest rates (see Cochrane and Piazzesi, 2008). On the other hand, this

extreme persistence makes inference about the risk-neutral long-run mean of the short

rate very di¢ cult (see Hamilton and Wu, 2012), which is re�ected in an estimated rQ1
that is unusually high.

Since the cross-section of bond yields is determined by the Q-parameters, Figure 1
presents both the estimated bond yield loadings implied by the a¢ ne term structure model

and the regression coe¢ cients that one would obtain from projecting bond yields on the

�rst two principal components (i.e., the loadings from a principal-components analysis).

The latter coe¢ cients thus provide a natural benchmark to compare the pricing errors

implied by our no-arbitrage model. Figure 1 shows that our term structure model is

�exible enough to replicate the level and slope shapes of the loadings on individual bond

yields obtained from a principal-components analysis. We quantify this remark by looking

at the �t of the model. Speci�cally, the root mean squared pricing error (RMSPE) of the

model is 11.81 basis points (bps), which is only marginally worse than the 11.64 bps

RMSPE of the reduced-form model. This is con�rmed when we look at mean absolute

pricing errors (MAPEs). In this case, we have 8.20 versus 7.98 bps. Hence, the loss from

imposing the no-arbitrage conditions is minimal: the di¤erence in pricing errors is less

than one basis point. In fact, since the risk-neutral measure parameters are pinned down

by the cross-section of interest rates, this accuracy in �tting bond yields translates into

tight standard errors around these estimates.24

Panel b of Table 3, in which we present the estimates of the parameters driving the

physical dynamics of the factors, shows that the level factor is very persistent, with a

24For completeness, we also note that the OLS estimates of the model imply RMSPE and MAPE of
12.20 and 8.50 bps, respectively. While the model �t is worse than under CGLS estimation, we note that
the loss from using the simpler estimator is minimal. This result is even more compelling once we recall
that the OLS estimates do not impose self-consistency. Still, for illustrative reasons, we continue using
the CGLS estimator in the rest of the paper.
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0.98 coe¢ cient, while the slope coe¢ cient decays somewhat faster, with a 0.90 coe¢ cient.

Lastly, the return-forecasting factor is the least persistent factor, with a 0.75 coe¢ cient.

The estimated dynamics seem to be consistent with those found by Cochrane and

Piazzesi (2008) for the United States. First, a change in the level factor does not seem

to have an impact on anything else: the e¤ect of a change in the level factor on the

slope is 0.0074, while the e¤ect on the return-forecasting factor is -0.0001. Second, the

return-forecasting factor seems to set o¤ a small e¤ect on the level but not on the slope.

Lastly, a movement in the slope a¤ects all three factors. For example, the coe¢ cient

that measures the e¤ect of a change in the slope on the return-forecasting factor is 0.36.

This implies that, even if current expected returns are zero today, one would forecast

high future returns when the term structure is upward sloping. We have to be careful in

interpreting this result, since this coe¢ cient is measured with great imprecision.

Also, it is interesting to analyze the e¤ects of the restrictions on the prices of risk and

the bias correction of the reduced-form parameters on the estimated persistence of this

system. In particular, we �nd that the estimated persistence of a model with unrestricted

VAR(1) dynamics under P is 0.9897. Imposing the CP-like restrictions, on the other
hand, increases the estimated persistence only marginally (0.9905). Finally, a combined

approach of the price of risk restrictions and bias corrections pushes the persistence up

to 0.9938.

We can use the fact that the minimized value of the ALS criterion function has an

asymptotic �2 distribution to test the validity of the model. Speci�cally, we have that

the dimensionality of the distance function is 198, the number of parameters of interest

is 27 and there are six additional restrictions imposed by the CP single-factor structure

of excess returns. This leaves 165 degrees of freedom. The 1 per cent (5 per cent) critical

value for a �2(165) is 210.17 (195.97), while the minimized value of the ALS criterion

is 168.76. Hence, there is no evidence that the restrictions imposed by the model are

inconsistent with the data.

We also test the validity of the CP restrictions using an ALS-based distance metric test.

In particular, we calculate the di¤erence between the ALS criterion function evaluated at

the estimate that imposes the self-consistency and CP restrictions, and the ALS criterion

function evaluated at an estimate that only imposes the self-consistency restrictions. We

note that both estimates have been computed using the same weighting matrix. This

di¤erence has an asymptotic �2 distribution with six degrees of freedom (i.e., the number

of restrictions). The 1 per cent (5 per cent) critical value for a �2(6) is 16.81 (12.59), while

the di¤erence between the ALS criteria is 1.26. Thus, we do not �nd evidence against the

CP restrictions.
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7.4 Prices of risk

Estimates of the prices of risk subject to the CP restrictions are shown in Table 4. Panel a

focuses on the (quarterly) price of risk coe¢ cients. We �nd that both the level and slope

factors are priced, and that their prices of risk are solely driven by the return-forecasting

factor. Still, it is interesting to note that the coe¢ cient on the price of slope risk is very

small, which implies that compensation for level risk is the dominant factor in quarterly

expected excess returns. Panel b reports the estimated coe¢ cients driving one-year bond

premia. Given our set of restrictions, there are only two free parameters: the constant and

the coe¢ cient on the return-forecasting factor. We �nd that they are both signi�cantly

di¤erent from zero.

A concern regarding the validity of these results relates to the fact that the return-

forecasting factor is a generated regressor. In particular, since our standard errors do not

account for this problem, it can be the case that our tests are misleading. For this reason,

we exploit the numerical tractability of our estimation method to compute bootstrap p-

values that correct for the generated regressor problem. In particular, we �rst estimate

the model subject to risk-neutrality (i.e., � = �Q and � = �Q) and the self-consistency

restrictions using the methods described in section 3.3. Second, using these estimates

and the methods described in section 6.6, we generate an arti�cial sample of yields that

satis�es the null that the prices of risk are all zero. Third, using this time-series of pseudo

yields, we recompute the return-forecasting factor, estimate the model subject to the

Cochrane-Piazzesi and self-consistency restrictions, and save the corresponding t-stats for

the null hypothesis that the prices of risk are zero. Finally, we repeat these steps to

compute J = 2000 bootstrap replications and build the distribution of our test statistics.

We report bootstrap p-values in curly brackets in Table 4. We note that, while the

bootstrap p-values are slightly higher than asymptotic p-values (reported in square brack-

ets), we still �nd that the coe¢ cients on the return-forecasting factor are signi�cantly

di¤erent from zero.

7.5 Decomposing the Canadian yield curve

In this section, we use the parameter estimates of our three-factor GDTSM to decompose

long-term interest rates into expectations of future short-term rates and term premia. In

particular,

yt;n =
1

n

nX
h=1

Etrt+h�1 + tpt;n: (37)

That is, the n-period interest rate at time t, yt;n, is equal to the average path of the short-

term rate over the following n periods and a risk-premium component, tpt;n, usually called
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the term premium. This term premium is the expected return from holding an n-period

bond to maturity while �nancing this investment by selling a sequence of one-year bonds.

We start by analyzing the model�s implications for expected future short-term interest

rates, the �rst term in (37). Figure 2 plots the current one-quarter yields, yt;1 = rt, and the

expected average short-term rate over the next 10 years (60 quarters), 1
n

Pn
h=1Etrt+h�1,

generated by our restricted and bias-corrected three-factor model and, for comparison

purposes, a fully unrestricted three-factor model. Both the one-quarter yield and the

expectations component generated by these two models tend to drift downwards from the

mid-1980s until the end of the sample. In fact, the bias correction on the parameters

driving the physical dynamics under P and the Cochrane-Piazzesi restrictions only seem
to induce an almost parallel shift upwards on the projected path of the short rate.

We now analyze the second term in the decomposition in equation (37). Figure 3

plots the term premium implied by the restricted three-factor model. We �nd that the

estimated term premium is countercyclical, increasing rapidly during the two Canadian

recessions in our sample, and seems to be driven by both Canadian and global factors.

For example, the term premium spikes several times during the mid-1990s, re�ecting

Canada�s loss of its AAA credit-rating status after Moody�s downgrade of its sovereign

credit rating from Aaa to Aa1 in June 1994, and the uncertainty about the outcome of

the �scal reforms implemented in Canada at the time.25

Interestingly, and as recently noted by Bauer and Diez de los Rios (2012), the Canadian

term premium also reacts to global events. For example, we observe a surge of the term

premium during the U.S. recession that followed the burst of the dotcom bubble in 2000-

01, even though output in Canada did not su¤er as much. More recently, the Canadian

term premium spikes in the last part of the sample due to the European sovereign crisis

and the 2011 Japanese earthquake.

8 Final remarks

In this paper, we consider a new linear regression approach to the estimation of GDTSMs

that completely avoids numerical optimization methods. Speci�cally, our linear estimator

is an asymptotic least squares estimator that exploits three features that characterize this

class of models. First, GDTSMs have a reduced-form representation whose parameters

can be easily estimated via OLS regressions. Second, the no-arbitrage assumption upon

which GDTSMs are built can be characterized as a set of implicit constraints between these

reduced-form parameters and the parameters of interest. Third, this set of restrictions is

25On the other hand, the impact of the S&P downgrade by one notch from AAA in October 1992 was
small.
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linear in the parameters of interest. Consequently, we use the asymptotic least squares

estimation principle and infer the parameters of the term structure model by forcing the

no-arbitrage constraints, evaluated at the OLS estimates of the reduced-form parameters,

to be as close as possible to zero.

In addition, we discuss the advantages of our method with respect to recently suggested

approaches to the estimation of GDTSMs. In particular, we �nd that our asymptotic least

squares estimator remains tractable and asymptotically e¢ cient in a variety of situations

(i.e., estimation subject to equality constraints) in which the other approaches lose their

tractability. Furthermore, we provide a Monte Carlo study to con�rm that the tractability

of the ALS estimator does not come at the expense of e¢ ciency losses or bad �nite-sample

properties.

Finally, we use our estimation method to decompose the Canadian ten-year zero-

coupon bond yield into an expectations and term premium component. In particular, we

use a three-factor speci�cation that is designed to capture all the economically interesting

variations in both the cross-section of interest rates and bond risk premia. Moreover, we

exploit the numerical tractability of our estimation method to compute bootstrap p-values

that correct for the generated regressor problem that is inherent in the estimation of our

model.

Our methodology suggests that caution should be exercised when selecting the factors

driving the cross-section of interest rates. In particular, our method reveals that when the

factor loadings are close to or equal to zero, or the matrix of loadings has a near-reduced

rank structure, the asymptotic approximations to the distribution of our asymptotic least

squares estimators become non-standard. Further, since (the optimal implementation of)

our method delivers an estimator that is equivalent to maximum likelihood estimation,

we suspect that maximum likelihood estimates of the parameters of the GDTSM might

also be subject to weak identi�cation concerns. Thus, an alternative interesting avenue

for further research would be the use of identi�cation-robust methods in the estimation

of term structure models.

Another area that deserves further investigation is the application of the asymptotic

least squares principle to non-Gaussian term structure models that allow for stochastic

volatility given that, in such a case, OLS estimates of the reduced-form parameters remain

consistent and asymptotically normal.
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Table 1
Finite-sample properties of GDTSMs estimators

100� rQ1 	Q 100� � � 100��
True values 3.00 0.9750 0.15 0.900 0.300

OLS Mean 2.91 0.9734 0.21 0.860 0.296
Std 0.14 0.0022 0.09 0.056 0.021
EStd 0.13 0.0021 0.08 0.050 0.021
RMSE 0.17 0.0027 0.11 0.070 0.022
CINT-95 82.5% 88.8% 91.1% 90.7% 93.2%

CGLS Mean 2.99 0.9750 0.21 0.860 0.297
Std 0.04 0.0004 0.09 0.056 0.013
EStd 0.04 0.0004 0.08 0.050 0.013
RMSE 0.04 0.0004 0.11 0.070 0.013
CINT-95 93.8% 95.6% 91.1% 90.7% 94.9%

HW-ei Mean 3.00 0.9749 0.21 0.860 0.296
Std 0.15 0.0026 0.09 0.056 0.021
EStd 0.15 0.0025 0.08 0.050 0.021
RMSE 0.15 0.0026 0.11 0.070 0.021
CINT-95 94.5% 94.8% 91.1% 90.7% 93.2%

HW-oi Mean 3.00 0.9750 0.21 0.863 0.297
Std 0.09 0.0014 0.09 0.056 0.019
EStd 0.09 0.0013 0.08 0.050 0.019
RMSE 0.09 0.0014 0.11 0.070 0.019
CINT-95 93.9% 95.3% 91.1% 90.7% 93.1%

ML Mean 3.00 0.9750 0.21 0.860 0.297
Std 0.09 0.0014 0.09 0.056 0.019
EStd 0.09 0.0014 0.08 0.050 0.019
RMSE 0.09 0.0014 0.11 0.070 0.019
CINT-95 94.1% 95.4% 91.1% 90.7% 93.2%

ML-all Mean 3.00 0.9750 0.21 0.863 0.299
Std 0.04 0.0004 0.09 0.053 0.013
EStd 0.04 0.0004 0.08 0.050 0.012
RMSE 0.04 0.0004 0.11 0.065 0.013
CINT-95 94.6% 95.1% 91.1% 90.7% 94.5%
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Table 2
Cochrane and Piazzesi regressions

constant g
(0→4)
t g

(4→8)
t g

(8→12)
t g

(12→16)
t g

(16→20)
t g

(36→40)
t g

(56→60)
t R2 Wald

Original CP (2005) -0.90 -5.00 10.70 -21.72 26.65 -10.28 0.20 25.34
(3.00) (1.42) (5.21) (10.26) (11.03) (5.16) [<0.001]

Sekkel (2011) -1.22 -2.78 3.00 0.19 0.17 10.22
(2.91) (0.92) (2.55) (2.05) [0.02]

Long-dated forwards -0.25 -2.95 0.79 5.94 2.55 -5.48 0.46 82.92
(2.97) (1.17) (1.90) (1.64) (0.87) (1.12) [<0.001]

Note: Data are sampled quarterly from 1986Q1 to 2012Q2. Newey and West (1987) asymptotic standard errors are given in
parentheses.
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Table 3
Parameter estimates

Panel a: Risk-neutral parameters
100� rQ1  1  2

JSZ coe¢ cient 10.465 0.9989 0.8809
(1.730) (0.0002) (0.0016)
[<0.001] [<0.001] [<0.001]

Panel b: Physical parameters
�

� level slope CP
level 0.0358 0.9846 0.2371 -0.0760

(0.1351) (0.0046) (0.0449) (0.0222)
[0.791] [<0.001] [<0.001] [0.001]

slope 0.0623 0.0074 0.8941 0.0011
(0.0046) (0.0002) (0.0019) (0.0004)
[<0.001] [<0.001] [<0.001] [0.003]

CP 0.0323 -0.0001 0.3581 0.7577
(0.8287) (0.0458) (0.3982) (0.0636)
[0.969] [0.998] [0.369] [<0.001]

Panel c: Innovation variance parameters
�1=2

level slope CP
level 0.9436 0 0

(0.0816) - -
[<0.001] - -

slope -0.1073 1.0575 0
(0.0796) (0.1050) -
[0.178] [<0.001] -

CP 0.2664 2.1517 1.8002
(0.1778) (0.3362) (0.3101)
[0.134] [<0.001] [<0.001]

Note: Data are sampled quarterly from 1986Q1 to 2012Q2. Asymptotic standard errors are
given in parentheses, and asymptotic p-values in square brackets.
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Table 4
Price of risk estimates

Panel a: Quarterly bond premia
�1

�0 level slope CP
level 0.0582 -0.0002 0.03823 -0.0760

(0.1351) (0.0046) (0.0449) (0.0222)
[0.667] [0.960] [0.395] [<0.001]
{0.823} {0.973} {0.526} {0.011}

slope -0.0007 0.0001 -0.0009 0.0011
(0.0023) (0.0001) (0.0011) (0.0004)
[0.764] [0.939] [0.404] [0.003]
{0.865} {0.957} {0.534} {0.018}

Panel b: Annual bond premia

�
(4)
1

�
(4)
0 level slope CP

level 0.2216 0 0 -0.2037
(0.3823) - - (0.0516)
[0.562] - - [<0.001]
{0.816} - - {0.008}

slope 0 0 0 0
- - - -
- - - -
- - - -

Note: Data are sampled quarterly from 1986Q1 to 2012Q2. Asymptotic standard errors are
given in parentheses, asymptotic p-values in square brackets and bootstrap p-values in curly brack-
ets.
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Figure 1: Bond factor loadings: affine term structure versus OLS estimates 
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Figure 2: Expected average path of the Canadian one-quarter yield  
over the next ten years 
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Figure 3: Term premium on Canadian ten-year yields 
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Appendix

A Propositions

Proposition 1. Let

b� = argmin
�
Tg(b�;�)0V+

g (�
0)g(b�;�) s.t. r(�) = 0

denote the optimal ALS estimator of the (K�1) vector of unknown parameter � de�ned by
the (G�1) system of implicit equations g(b�;�) = 0 where b� denote a strongly consistent
and asymptotically normal estimator of the auxiliary parameters �. Under the usual
regularity conditions, together with assumptions 1 and 2 in the main text,

(i) b� is identi�ed along the manifold r(�) = 0
(ii) b� is asymptotically e¢ cient, in the sense that the di¤erence between the asymptotic

covariance matrix of this estimator and any other ALS estimator based on the
same set of implicit equations and the same consistent and asymptotically normal
estimator of the auxiliary parameters is negative semide�nite regardless of the choice
of the weighting matrix WT or whether the equality restrictions r(�) = 0 are
imposed.

(iii) the minimized value of the ALS criterion function, Tg(b�; b�)0V+
g (�

0)g(b�; b�), has an
asymptotic �2 distribution with degrees of freedom equal to G�K.

Proof. This proof closely follows Peñaranda and Sentana (2012), where further details
can be found.
Let the spectral decomposition of Vg(�

0) be given by

Vg(�
0) =

�
T1 T2

�� � 0
0 0

��
T01
T02

�
= T1�T

0
1;

where � is a (G � S) � (G � S) positive de�nite diagonal matrix; and, without loss of
generality, let V+

g (�
0) be the Moore-Penrose26 generalized inverse of Vg(�

0):

V+
g (�

0) = T1�
�1T01:

In order to simplify the notation, it is convenient to reparameterize the parameter
space into the alternative K parameters � (S � 1) and � ((K � S)� 1) such that

R(�) =
�
�0 �0

�0
;

26As noted by Peñaranda and Sentana (2012), it is possible to show that the results in this proposition
hold for any generalized inverse of Vg(�

0): While a similar argument would apply here, we focus on the
Moore-Penrose generalized inverse for simplicity.
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where the �rst S elements of R(�) are such � = r(�). In particular, we can choose
R(�) to be a regular transformation of � on an open neighbourhood of �0. Further, let
q [R(�)] = � be the corresponding inverse transformation of R(�) that recovers � back.
Let the Jacobians of the inverse transformation be given by

Q(�;�) =
@q(�;�)

@(�0;�0)
=
�
Q�(�;�) Q�(�;�)

�
:

This transformation allows us to impose the parametric restrictions r(�) = � = 0

by simply working with the smaller set of parameters � and the distance functions
g [b�;q(0;�)]. Thus the optimal ALS estimator can be de�ned as b� = q(0; b�) where

b� = argmin
�
Tg [b�;q(0;�)]0V+

g (�
0)g [b�;q(0;�)] :

(i) Since (T1;T2) is an orthogonal matrix, and the rank [Q(�;�)] = K given that
R(�) is a regular transformation of � on open neighbourhood of �0, we have by the inverse
function theorem that

rank
�
G�(�

0;�0)
�
= rank

�
T01G�(�

0;�0)Q�(0;�) T01G�(�
0;�0)Q�(0;�)

T02G�(�
0;�0)Q�(0;�) T02G�(�

0;�0)Q�(0;�)

�
= K:

(38)
Note now that Assumptions 1 and 2 imply that �0 [l(0;�)]

p
Tg [b�;q(0;�)] p�! 0 for

all � in the neighbourhood. So, by di¤erentiating this random process with respect to �
and evaluating the derivatives at the true value �0 we have, by the continuous mapping
theorem, that

p
T
�
g
�b�;q(0;�0)�
 IS	 @vec��0 �q(0;�0)�	

@�0
+�0

�
q(0;�0)

�p
T
@
p
Tg
�b�;q(0;�0)�
@�0

p�! 0

�
g
�b�;q(0;�0)�
 IS	 @vec��0 �q(0;�0)�	

@�0
+�0

�
q(0;�0)

� @pTg �b�;q(0;�0)�
@�0

p�! 0;

since 1=
p
T

p�! 0.
Using the chain rule, the previous expression can be written as

�
g
�b�;q(0;�0)�
 IS	 @vec��0 �q(0;�0)�	

@�0
Q�(0;�

0)+�0
�
q(0;�0)

�
G�

�b�;q(0;�0)�Q�(0;�
0);

which implies that
�0
�
q(0;�0)

�
G�

�
l(0;�0)

�
Q�(0;�

0) = 0

withG�(�) =G� [p(�);�] and where we have used that g
�b�;q(0;�0)� p�! g

�
�0;q(0;�0)

�
=

g(�0;�0) = 0, and that G�

�b�;q(0;�0)� p�! G�

�
p(�0);q(0;�0)

�
= G�

�
q(0;�0)

�
.

Finally, note that since T02Vg(�
0) = 0; then T2 must be a full-column rank linear

transformation of �(�). Therefore, it has to be that

T02G�

�
q(0;�0)

�
Q�(0;�

0) = 0;
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which implies that rank
h
Q0
1G�(�

0;�0)Q�(0;�)
i
= K � S for (38) to be true. Thus,

after imposing that � = 0, the reduced system of distance functions Q0
1g [b�;q(0;�)] will

�rst-order identify � at �0.

(ii) Since the transformation from � to (�;�) is regular on an open neighbourhood
of �0, a �rst-order expansion system of distance functions delivers:

p
T (b� � �0) = �

h
Q0
�(0;�

0)G0
�(�

0)V+
g (�

0)G�(�
0)Q�(0;�

0)
i�1

�Q0
�(0;�

0)G0
�(�

0)V+
g (�

0)
p
Tg(b�;�0) + op(1): (39)

Therefore, p
T (b� � �0) d�! N [0;V�] ;

where
V� =

h
Q0
�(0;�

0)G0
�(�

0)V+
g (�

0)G�(�
0)Q�(0;�

0)
i�1

: (40)

In addition, note that since the optimal ALS estimator is given by b� = q(0; b�), we can
use the Delta method to compute its asymptotic distribution:

p
T (b� � �0) d�! N

h
0;Q�(0;�

0)V�Q
0
�(0;�

0)
i
: (41)

We now compare the asymptotic covariance matrix of this optimal estimator with the
ALS estimator that uses W as a weighting matrix and does not impose the restrictions
r(�) = 0. In particular, the asymptotic covariance matrix of such an estimator is given
by �

G0
�(�

0)WG0
�(�

0)
��1

G0
�(�

0)WVg(�
0)WG�(�

0)
�
G0
�(�

0)WG0
�(�

0)
��1

:

Therefore, for b� to be optimal, we need�
G0
�(�

0)WG0
�(�

0)
��1

G0
�(�

0)WVg(�
0)WG�(�

0)
�
G0
�(�

0)WG0
�(�

0)
��1

�Q�(0;�
0)V�Q

0
�(0;�

0)

to be positive semide�nite, which in turn requires

G0
�(�

0)WVg(�
0)WG�(�

0)

�
�
G0
�(�

0)WG0
�(�

0)
�
Q�(0;�

0)V�Q
0
�(0;�

0)
�
G0
�(�

0)WG0
�(�

0)
�

to be positive semide�nite as well.
It can be shown that this is the case given that this matrix is the asymptotic residual

variance of the limiting least squares projection of
p
TG0

�(�
0)Wg

�b�;�0� onp
TQ0

�(0;�
0)G0

�(�
0)V+

g (�
0)g(b�;�). In particular:

lim
T�!1

V ar

� p
TG0

�(�
0)Wg

�b�;�0�p
TQ0

�(0;�
0)G0

�(�
0)V+

g (�
0)g(b�;�)

�
=�

G0
�(�

0)WVg(�
0)WG�(�

0) G0
�(�

0)WG�(�
0)Q�(0;�

0)
Q0
�(0;�

0)G0
�(�

0)WG�(�
0) V�1

�

�
:
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Alternatively, we can consider the variance of a third ALS estimator that usesW as
weighting matrix but imposes the restrictions r(�) = 0:�

Q0
�(0;�

0)G0
�(�

0)WG0
�(�

0)Q�(0;�
0)
��1

�Q0
�(0;�

0)G0
�(�

0)WVg(�
0)WG�(�

0)Q�(0;�
0)

�
�
Q0
�(0;�

0)G0
�(�

0)WG0
�(�

0)Q�(0;�
0)
��1

;

and the variance of a fourth estimator that uses the generalized inverse of Vg(�
0) as a

weighting matrix but does not impose r(�) = 0:�
G0
�(�

0)V+
g (�

0)G0
�(�

0)
��1

G0
�(�

0)V+
g (�

0)G�(�
0)
�
G0
�(�

0)V+
g (�

0)G0
�(�

0)
��1

=�
G0
�(�

0)V+
g (�

0)G0
�(�

0)
��1

:

Again, it is possible to prove that the di¤erence between any of these two matrices and
Q�(0;�

0)V�Q
0
�(0;�

0) is positive semide�nite.

(iii) Using a Taylor expansion of
p
Tg
hb�;q(0;b�)i and equation (39), we have that

p
Tg
hb�;q(0;b�)i

=
p
Tg(b�;�0) +G�(�

0)Q�(0;�
0)
p
T (b� � �0) + op(1)

=
h
I�G�(�

0)Q�(0;�
0)V�Q

0
�(0;�

0)G0
�(�

0)T1�
�1T01

ip
Tg(b�;�0) + op(1);

and rearranging the previous expression as
p
Tg
hb�;q(0;b�)i

= T1�
1=2
�
IG�S �H(H0H)�1H0�pT��1=2T01g(b�;�0)+op(1);

where H = ��1=2T01G�(�
0)Q�(0;�

0). Therefore, the criterion function evaluated at the
optimal ALS estimator is

Tg
hb�;q(0;b�)i0V+

g (�
0)g
hb�;q(0;b�)i = bz0 �IG�S �H(H0H)�1H0�bz+op(1);

where bz = ��1=2T01g(b�;�0) is asymptotically distributed as a standard multivariate nor-
mal, which implies that the criterion function converges to a chi-square distribution with
G � K degrees of freedom, given that the matrix

�
IG�S �H(H0H)�1H0� is idempotent

with rank (G� S)� (K � S) = G�K.

Proposition 2. Assume, without loss of generality, that the function that im-
plicitly de�nes the K � S-dimensional manifold in � over which S linear combina-
tions of

p
Tg(b�;�) converge in probability to zero (Assumption 1) can be written as

r(�) = r [p(�)] = 0. Let b� be an estimator that is asymptotically equivalent to maxi-
mum likelihood and that satis�es r(b�) = 0, and let the system of implicit relationships
g(�;�) = 0 be complete (i.e., G = H and G�has full rank). Then, the optimal ALS
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estimator that uses a generalized inverse of Vg(�
0) as the weighting matrix and that,

simultaneously, imposes the restriction r(�) = r [p(�)] = 0 is asymptotically equivalent to
the ML estimator that imposes that restriction.

Proof. As in the proof of Proposition 1, we will work with the alternative set of K
structural parameters � (S � 1) and � ((K � S)� 1) such that

R(�) =
�
�0 �0

�0
;

where the �rst S elements of R(�) are such that � = r(�). Again, let q [R(�)] = � be
the inverse transformation of R(�) that recovers � back, and let its Jacobians be denoted
by Q(�;�) =@q(�;�)=@(�0;�0). As noted earlier, this (regular) transformation allows
us to impose the parametric restriction r(�) = 0 by simply setting � = 0. In particular,
the asymptotic distribution of the ML estimate of � subject to the restriction that � = 0
is given by p

T (b�ML � �0)
d�! N

�
0;��1

�� (0;�
0)
�
;

where ���(�;�) = � 1
T
E
h
@2 logL(�;�)

@�@�0

i
is the relevant block of the information matrix.

Similarly, since the ML estimator of � that imposes the restriction r(�) = 0 is given byb�ML = q(0;b�ML); we can use the Delta method to compute its asymptotic distribution:

p
T (b�ML � �0)

d�! N
h
0;Q�(0;�

0)��1
�� (0;�

0)Q
0
�(0;�

0)
i
:

In particular, the optimal ALS estimate of � will be asymptotically equivalent to ML
if they have the same asymptotic variance. Comparing this expression with equation (41),
it is straightforward to see that this will only occur when V� = �

�1
�� .

In order to prove this result, we will work on an alternative set of G auxiliary para-
meters � (S � 1) and  ((G� S)� 1) such that

M [p(�)] =
�
�(�)0 (�)0

�0
;

where the �rst S elements of M(�) are such that � = r(�). Let l [M(�)] = � be the
corresponding inverse transformation of M(�) that recovers � back. Let the Jacobians
of the inverse transformation be given by

L(�;) =
@l(�;)

@(�0; 0)
=
�
L�(�;) L(�;)

�
:

Note that this second (regular) transformation of the auxiliary parameters allows us to
impose the parametric restriction r(�) = 0 on both the estimation of the auxiliary and
parameters of interest. Speci�cally, we have that �(�) = r [q(0;�)] = 0 for all �. Further,
the asymptotic distribution of the ML estimate of  subject to the restriction that � = 0
is given by p

T (bML � 0)
d�! N

�
0;��1

 (0;0)
�
;
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where �(�;) = � 1
T
E
h
@2 logL(�;)

@@0

i
is the relevant block of the information matrix.

Note that ��� =
@�0

@
�

@�
@0 .

Moreover, since the ML estimator of � that imposes the restriction r(�) is given byb�ML = l(0; bML); we can use the Delta method to compute its asymptotic distribution:

p
T (b�ML � �0)

d�! N
h
0;L(0;

0)��1
 (0;

0)L0(0;
0)
i
: (42)

Finally, note that, since the system is complete, and the fact that both R(�) andM(�)
are regular imply that Q(�;�) and L(�;) have full rank, we can write that

@�

@�0
=

@��
�0  0

� � @

�
�


�
�
�0 �0

� � @
�
�
�

�
@�0

�G�1
� G� = L(�;)

 
@�
@�0

@�
@�0

@
@�0

@
@�0

!
Q�1(�;�)

�G�1
� G�

�
Q� Q�

�
=
�
L� L

� @�
@�0

@�
@�0

@
@�0

@
@�0

!
;

which, since �(�) = r [q(0;�)] = 0 for all � implies that @�=@�0 = 0; we have that

�G�Q� = G�L
@

@�0
: (43)

Substituting equations (42) and (43) evaluated at � = �0 in the expression for V� in
(40) we have that

V�1
� =

@ 0

@�

�
L0(0;

0)G0
�(�

0)
h
G�(�

0)L(0;
0)��1

 (0;
0)L0(0;

0)G�(�
0)
i+

�G�(�
0)L(0;

0)
	 @
@�0

:

LetD be the term inside the curly brackets. PremultiplyingD byG�(�
0)L(0;

0)��1
 (0;

0),
and postmultiplying it by ��1

 (0;
0)L0(0;

0)G�(�
0); we �nd that

G�(�
0)L(0;

0)��1
 (0;

0)D��1
 (0;

0)L0(0;
0)G�(�

0) =

G�(�
0)L(0;

0)��1
 (0;

0)L0(0;
0)G�(�

0);

where we have used the fact that a generalized inverse must satisfyWW+W =W. Thus,
D = � for the last equation to be true. This implies that,

V� =

�
@

@�0
�

@ 0

@�

��1
= ��1

�� :

Therefore, the optimal ALS estimator that uses a generalized inverse of Vg(�
0) as the

weighting matrix and that, simultaneously, imposes the restriction r(�) = r [p(�)] = 0 is
asymptotically equivalent to the ML estimator that imposes that restriction.
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B Adrian, Crump and Moench (2012) from an ALS
perspective

Adrian, Crump and Moench (2012) focus on bond excess holding period returns rather
than on yields themselves. In particular, the one-period excess return on a bond of
maturity n is the gain from buying an n-period bond and selling it one year later, �nancing
the position at the short rate:

rxt+1;n � log
�
Pt+1;n�1
Pt;n

�
� rt = nyt;n � (n� 1)yt+1;n�1 � rt: (44)

Substituting (1), (6), (7) and (8) into this last expression, we can show that the one-
period excess return for holding an n-period zero-coupon bond is given by

rxt+1;n = �
1

2
B0n�1�Bn�1 +B

0
n�1(�0 + �1ft) +B

0
n�1vt+1;

and, adding an iid pricing error "t;n to this last equation, we have that

rxt+1;n = Dn + E
0
nft + F

0
nvt+1 + "t;n; (45)

where

Dn =
1

2
F0n�Fn + F

0
n�0; (46)

E0n = F
0
n�1; (47)

for n = 2; :::; N .
By a similar argument to the one proposed in section 2.2, we have that if the innovation

covariance matrix � and the set of coe¢ cients Dn; En and Fn�s were observed directly,
one could easily estimate the price of risk parameters of the model using a set of (cross-
sectional) OLS regressions. In particular, one could recover an estimate of �1 as

b�1 =  NX
n=2

FnF
0
n

!�1 NX
n=2

FnE
0
n

!
; (48)

while an estimate of �0 from

b�0 =  NX
n=2

FnF
0
n

!�1 " NX
n=1

Fn(Dn �
1

2
F0n�Fn)

#
: (49)

However, this estimator is (again) infeasible, because the innovation covariance matrix
�; and the set of coe¢ cients Dn; En and Fn�s are, in practice, unknown. Instead, we
could follow the same principles used to develop the linear estimator in section 2.2, and
replace these unknown quantities by some consistent estimates. Speci�cally, we could �rst
estimate the VAR(1) process in equation (1) to obtain b�; b� and b�, as well as an estimate
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of the innovation, bvt+1. Second, we could use equation (44) to run a regression of rxt;n
on a constant, the lagged pricing factors, ft�1, and the contemporaneous pricing factor
innovations bvt to obtain a set of estimates of Dn; En and Fn�s for n = 2; :::; N . Finally,
we could recover an estimate for the market prices of risk parameters, �0 and �1 from the
cross-sectional regressions in (48) and (49) by simply replacing the unknown objects in
these equations by the consistent estimates obtained in the previous step. In fact, such an
approach is exactly the three-step linear regression method proposed by Adrian, Crump
and Moench (2012). In addition, the short-rate parameters, �0 and �1, can be obtained
by running an OLS regression of one-period yield on the pricing factors.
Along the same lines of section 2.3, we can now interpret the ACM estimator within

the ALS framework. In particular, we have that the vector of reduced-form parameters
is given by

�ACM=
�
(�0 �

0
1) ;
�
vec
�
(D E F)0

�	0
;
�
vec
�
(� �)0

�	0
;
�
vech

�
�1=2

��0�0
;

where D is a vector that stacks the corresponding elements of Dn; and E and F are
matrices that stack the corresponding elements of E0n and F

0
n.

On the other hand, using that �Q = �� �0 and �Q = �� �1 with equations (46)
and (47) and stacking, it is possible to express the restrictions implied by the no-arbitrage
model as

H(�ACM ;�)
0 = YACM(�ACM)�XACM(�ACM)�

0 = 0; (50)

where

YACM(�ACM) =

0BBBBB@
�0 �01

D2 � 1
2
F02�F2 E02
...

...
DN � 1

2
F0N�FN E0N
� �

1CCCCCA ; XACM(�ACM) =

0BBBBB@
1 0 0
0 �F02 F02
...

...
...

0 �F0N FN
0 0 I

1CCCCCA ;
and where � satis�es

�0 =

0@ �0 �01
�Q �Q

� �

1A :
Note that � =

n
vec(�0);

�
vech

�
�1=2

��0o
; so by vectorizing equation (50) and adding

a set of identities, it is possible to arrive at the following distance function for the case of
ACM estimation:

h(�ACM ;�) =vec [H(�ACM ;�)] = ACM(�ACM)� �ACM(�ACM)�;

where

ACM(�ACM) =
�
YACM(�ACM); vech

�
�1=2

��0
;

�ACM(�ACM) =

�
XACM(�ACM)
 I 0

0 I

�
:
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With this notation, the ACM estimator is equivalent to the estimator that minimizes
a quadratic form in the distance function h(�ACM ;�), evaluated at the estimates of the
reduced-form parameters, b�ACM , where the weighting matrix has been chosen to be the
identity matrix,WT = I. Therefore, it is possible to achieve e¢ ciency gains by selecting
an appropriate weighting matrix and imposing the self-consistency of the model. However,
note that that system of implicit relationships h(�ACM ;�) is not complete (the number
of reduced-form parameters is larger than the dimension of the distance function), so,
even if we were using an optimal weighting matrix and impose self-consistency, the ACM
approach would still not be asymptotically equivalent to maximum likelihood estimation.
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