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Abstract 

This paper investigates the effect of oil price uncertainty on real economic activity using 
a quarterly VAR with stochastic volatility in mean. Stochastic volatility allows oil price 
uncertainty to vary separately from changes in the level of oil prices, and thus the impact 
of oil price uncertainty can be examined in a more flexible yet tractable way. In addition, 
this paper substantially improves on the recovery of a historical uncertainty series by 
incorporating an additional uncertainty indicator, i.e., a realized volatility series from 
daily oil price data, into the estimation process. The estimation results show that an oil 
price uncertainty shock alone has negative effects on world industrial production. 

JEL classification: E32, C32, Q43 
Bank classification: Business fluctuations and cycles; Econometric and statistical 
methods 

Résumé 

L’auteure analyse les effets de l’incertitude des cours du pétrole sur l’activité économique 
réelle à l’aide d’un modèle VAR trimestriel dont les équations de moyenne incluent un 
terme de volatilité stochastique. La volatilité stochastique permet à l’incertitude entourant 
les prix du pétrole de varier indépendamment de leur niveau; l’incidence de cette 
incertitude peut ainsi être étudiée dans un cadre plus flexible qui reste maniable. En outre, 
l’intégration au processus d’estimation d’un indicateur additionnel de l’incertitude, à 
savoir une série de volatilités réalisées calculées à partir des cours quotidiens de l’or noir, 
constitue un réel progrès par rapport à l’extraction d’une série temporelle relative à 
l’incertitude. Les résultats de l’estimation montrent qu’une hausse inattendue de 
l’incertitude des prix du pétrole a en soi des effets défavorables sur la production 
industrielle mondiale. 

Classification JEL : E32, C32, Q43 
Classification de la Banque : Cycles et fluctuations économiques; Méthodes 
économétriques et statistiques 

 

 



1 Introduction

The Great Recession of 2007 to 2009 has brought the importance of understanding the prop-

agation mechanism of uncertainty to the forefront. The unprecedentedly slow recovery to

which both economists and policy makers identify uncertainty as one potential contribu-

tor has reinforced the significance. Nonetheless, most macroeconomic literature in the past

have not focused so primarily on time-varying uncertainty, presuming that it would have

rather little effects on the macroeconomy. However, several studies have demonstrated that

heightened uncertainty can deteriorate a variety of real economic activity such as hiring,

investment, and durable consumption. For instance, Bernanke (1983) shows that firms post-

pone irreversible investment decisions and wait for more information to arrive under high

uncertainty, resulting in cyclical fluctuations in the economy. More recently, Bertola et al.

(2005) find that uncertainty of income flows widens the size of the inaction band, making

durable goods adjustment less frequent. Finally, Bloom et al. (2011) indicate that an un-

certainty shock, defined as an unexpected change in the conditional second moment of a

productivity innovation process, results in a sharp and rapid economic decline even though

the first moment remains unchanged.

Building on this line of literature, this paper investigates how oil price uncertainty affects

real economic activity. Since oil is a salient factor for both households’ consumption and

firms’ production decisions, it is conceivable that changes in oil price uncertainty may also

have effects on economic fluctuations, in addition to changes in the oil price level. In other

words, it is plausible that not only the actual change in the oil price, but also the variability

of the future oil price forecast have a significant impact on economic agents’ decision-making

process.

To assess how oil price uncertainty affects economic activity, I first define oil price uncer-

tainty as the time-varying standard deviation of the one-quarter ahead oil price forecasting

error. The standard deviation of the forecasting error controls the size of an unanticipated
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oil price change, and likewise most of previous studies on uncertainty also define it as the

time-varying second moment of a shock process. Hence, the standard deviation constitutes

a good proxy of price uncertainty.1 In particular, I model oil price uncertainty to evolve as

a stochastic volatility process, and include the time-varying volatility in the mean equations

of a three-variable vector autoregression (VAR) model that can directly measure the impact

of uncertainty.

Several empirical studies have demonstrated the significance of oil price uncertainty from

various perspectives. Lee et al. (1995) were among the first to emphasize the importance of

accounting for the second moment of oil prices in forecasting economic activity. The new

oil price shock variable proposed in their paper reflects both the size and the variability of

the forecast error, and explains GNP growth much better than e.g., real oil price changes

or regular forecast error, which implies that the effect of an oil price change in certain size

can differ depending on whether it is an unusual event or just another adjustment. Kellogg

(2010) tests for the responsiveness of firms’ investment decisions to changes in uncertainty

using Texas oil well drilling data and expectations of future oil price volatility. The result is

in support of the real option as firms reduce their drilling activity when expected volatility

rises. Lastly, Elder and Serletis (2010) and Bredin et al. (2010), which are most closely

related to this paper in the sense that they also directly measure the impact of oil price

uncertainty, use a two-variable Generalized Autoregressive Conditional Heteroskedasticity

(GARCH)-in-Mean VAR with oil price and economic activity for the U.S. and G-7 countries.

They find that an increase in oil price uncertainty decreases real economic activity, measured

by output, investment, and consumption in the U.S. and four of the G-7 countries. They

conclude that the 2003-2008 oil price surge has been rather steady and continuous, keeping oil

price uncertainty at a very low level. Hence, the overall change in oil price was less disruptive

than previous oil price episodes and did not lead to an immediate economic recession.

1Hence, I use the term oil price uncertainty and oil price volatility interchangeably henceforth.
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Most of the approaches taken in the previous literature define oil price uncertainty to

evolve as a GARCH process, and as a result, changes in volatility are fully determined by

changes in the level. In contrast, this paper proposes a novel framework for investigating the

dynamic responses to an unanticipated oil price uncertainty shock which is independent of

any changes in the price level. This is done by modeling the oil price uncertainty process

to follow stochastic volatility which permits the volatility process to have its own innovation

term in addition to that of the the first moment. This, in fact, is not possible in a GARCH

model where the volatility process is completely dependent upon changes in the level and

the volatility of the past. Time-varying oil price uncertainty is then included in the mean

equations of the VAR, from which one can have a direct estimate of the effect of uncertainty

on real economic activity. Hence, this framework provides a flexible yet tractable way of

examining the dynamic effect of an exogenous oil price uncertainty shock independent of

any changes in the price level.2 Furthermore, the proposed methodology is applicable to a

number of other cases where the dynamic effects of time-varying uncertainty of a variable on

another are examined, for instance, when investigating the effect of exchange rate uncertainty

on trade flows.

Another contribution of this paper is that it substantially improves on the recovery of

a time series of historical uncertainty. This again is one of the advantages of modeling oil

price uncertainty as stochastic volatility, since it offers room to incorporate an additional

oil price uncertainty indicator, i.e., realized volatility. This method is based on Dobrev and

Szerszen (2010) who find that there is a significant efficiency gain in estimating time-varying

stock return volatility if the realized volatility series constructed from high frequency data

is augmented with stochastic volatility of lower frequency. Unfortunately, high frequency

price data is not available before 1983 in the oil market. However, this paper resolves the

issue by using time-varying Kalman filter, which extends their framework to the oil market.

2The model can also be modified for the cases where the oil price shock and the oil price uncertainty shock
are correlated to each other, and thus, can nest the GARCH setup.
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As a result, the paper estimates the historical oil price uncertainty series with substantial

improvement in precision, spanning the long period from 1958Q2 to 2008Q3.

The main finding of this paper is that oil price uncertainty affects global real economic

activity in a significantly negative way. The impulse response analysis indicates that an oil

price uncertainty shock has the immediate and persistent negative effect of lowering economic

activity by about 0.1%-point. While the focus of the previous literature rather lies on mea-

suring the impact of price uncertainty at the national level (e.g. Elder and Serletis (2012)

and Bredin et al. (2010)), I use a world industrial production series, extending the analysis

to a global context. Related to this issue, Kilian and Vigfusson (2010) suggest that it may

not be appropriate to define oil price uncertainty as the time-varying conditional standard

deviation when analyzing one specific country since only one side of the price distribution is

likely to matter depending on its position in the oil market. For instance, an oil-exporting

country would only consider the higher chance of a large oil price drop as risk and make a

necessary adjustment, but would not respond to the higher chance of an oil price increase.

Hence, looking at global level data has the advantage of providing evidence robust to such

possibility.3 The main result is also robust to changes in the oil price series, to sub-periods of

the sample, and holds for advanced economies. Overall, the findings presented in this paper

emphasize the importance of accounting for oil price uncertainty since ignoring it can distort

the effect of a policy designed under the presumption of linearity in the oil price-economic

activity relationship.4

The rest of the paper is organized as follows: Section 2 introduces a VAR model with

stochastic volatility and further presents the augmentation of the model with realized volatil-

3However, according to the theoretical literature that defines uncertainty to be the overall dispersion of the
distribution in both directions, the conditional standard deviation can still be a proper proxy of uncertainty
for a country (see e.g., Bloom et al (2011)).

4It should be noted that this paper examines one specific type of uncertainty channel, i.e., the linear
effect of oil price uncertainty on real economic activity, among the wide variety of non-linear oil-economy
relationships found in Mork (1989), Hamilton (2003) and Baumeister and Peersman (2012, forthcoming)
among others.
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ity; Section 3 presents the empirical results; and Section 4 concludes.

2 Model and Estimation

2.1 A VAR model with time-varying volatility

In order to measure the effect of oil price uncertainty on the economy, I develop a modified

version of the VAR model with time-varying stochastic volatilities in the spirit of Cogley and

Sargent (2005), Primiceri (2005), and Baumeister and Peersman (2012, forthcoming). The

main difference is the inclusion of the term that captures the effect of time-varying oil price

uncertainty on the dynamics of economic activity. Another difference of the model lies in

the time-invariance of the VAR coefficients while the correlation and variance parameters’

time-dependence is preserved. Together, this specification permits to focus on the specific

form of non-linearity, namely, the linear effect of the conditional second moment of oil price.5

Hence, the VAR can be written as,

yt = B0 +B1yt−1 + ...+Bpyt−p + Λ log ht + ut, (1)

where yt is a 3× 1 vector consisting of quarterly world crude oil production, the real price of

crude oil and global real economic activity, covering 1958Q2 - 2008Q3.6 All variables are in

first differenced logs multiplied by 100, and represent the quarterly growth rate. The 3 × 1

vector B0 is an intercept, Bi for i = 1, . . . , p are 3×3 coefficient matrices with the number of

lags p set at 4 to allow for sufficient dynamics of the system. The reduced-form innovation

vector ut is defined to have the conditional mean zero and the conditional time-varying

5Not much variation over time is observed for the coefficient of interest (λ) when the coefficients are
permitted to be time-varying, and hence, time-invariant coefficients seem to capture the intended relationship
sufficiently well in a parsimonious way.

6The real crude oil price is the U.S. refiners’ acquisition cost of imported crude oil (IRAC) deflated by the
U.S. consumer price index. The real economic activity is measured by the industrial production index series
of the global economy. Details on data can be found in the Appendix A.
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variance-covariance matrix given by Ωt such that Ωt = A−1t ΣtΣ
′
t(A
−1
t )′ where

At =


1 0 0

a21,t 1 0

a31,t a32,t 1

 , Σt =


h1,t 0 0

0 h2,t 0

0 0 h3,t

 . (2)

By letting the lower triangular elements of At and the diagonals of Σt be time-varying, any

change in the correlations between variables will be captured, reflecting possible structural

changes in the oil market.

Let at ≡ [a21,t a31,t a32,t]
′ and log ht ≡ [log h1,t log h2,t log h3,t]

′. Then the dynamics of the

volatilities are modeled as follows:

at = at−1 + et, (3)

log ht = µ+ ρ log ht−1 + ηt, (4)

where et ∼ N(0, S) and ηt ∼ N(0,W ). That is, at evolves as a random walk process, and

the logarithms of ht, as a first-order autoregressive process. Hence, ht falls into the category

of stochastic volatility models. Here, ρ is a diagonal matrix with AR(1) coefficients on the

diagonal and µ is a 3×1 vector of intercepts. Instead of defining log ht as a unit root process

as has been done in the previous literature, I let the AR(1) coefficients be determined by

data.

In equation (1), the term Λ log ht captures the effect of time-varying oil price uncertainty

on global economic activity. Given that the focus is on oil price uncertainty and the economy,
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the structure of Λ is set to be,7

Λ =


0 0 0

0 0 0

0 λ 0

 . (5)

In sum, oil price uncertainty is modeled as stochastic volatility, and included in the mean

equations of the VAR. Stochastic volatility is one common and flexible way of modeling time-

varying volatilities. One popular alternative would be the GARCH model developed by Engle

(1982), as in Elder and Serletis (2010). However, the two classes of models differ crucially in

that the former has a free driving variable (ηt) in the volatility process and the latter does

not. Thus, in the GARCH model, the shock that changes the oil price level is the same shock

that increases volatility. In contrast, in the stochastic volatility framework, the volatility

can in principle evolve independently of any changes in the level. As a result, stochastic

volatility allows to separate the dynamic impact of an exogenous oil price uncertainty shock

from the shock to the level of the oil price. This is not possible with the GARCH setup

where the variation of the volatility is tied to the changes in level. In sum, the stochastic

volatility model offers flexibility, and yet it keeps the model fairly parsimonious and hence

computationally tractable.

In matrix form, the VAR can be rewritten as,

yt = B0 +B1yt−1 + ...+Bpyt−p + Λ log ht + ut

= [Xt log ht]
′[β λ] + A−1t Σtεt.

where Xt denotes I3 ⊗ xt with xt being a vector containing the constant and all four lags

7It serves the purpose of this paper sufficiently well to define the Λ matrix as above, but it would be also
interesting to look at other elements of Λ in future studies.
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of yt,
8 β denotes the vector of parameters with 3 × (3p + 1) elements with each row of the

coefficient matrices (B) stacked, and the error term εt follows a conditional multivariate

standard normal distribution.

The conditional error terms of the whole system εt, et, ηt are assumed to follow a Normal

distribution and to be uncorrelated to each other given the history up to t− 1 :


εt

et

ηt

 ∼ N

0,


I3 0 0

0 S 0

0 0 W


 .

Here, S is a block diagonal matrix as,

S ≡ V ar(et) =

 S1 0

0 S2

 ,
where S1 ≡ V ar(e21,t) and S2 ≡ V ar([e31,te32,t]

′), and W is assumed to be a diagonal matrix

with the error terms being independent of each other.

2.2 Augmented Model

In this section, I present the benchmark VAR model augmented with an additional oil price

uncertainty indicator, realized volatility. The idea of using an extra indicator for oil price

uncertainty in addition to the stochastic volatility component of the VAR follows Dobrev and

Szerszen (2010). They show that there is a substantial efficiency gain in estimating daily stock

market volatility when the information content of realized volatility is added to stochastic

volatility. Here, the realized volatility series is constructed from high frequency, i.e., intra-day

stock return data. To be more specific, the efficiency gain stems from adding a measurement

equation based on the asymptotic distribution of the realized volatility estimator to the

8Hence [Xt log ht] is a (40× 3) matrix.
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state-space model.

In the context of my paper, where the VAR models quarterly dynamics, high-frequency

data would refer to daily oil price changes. Yet the daily oil price data to construct the

realized volatility series is not available for about the first half of the sample period. The

framework originally designed by Dobrev and Szerszen (2010) is only appropriate when both

low and high frequency data are attainable for the full sample period, which is not the case

for the oil price. Hence, I extend the framework using a time-varying Kalman filter to account

for different sample sizes. In this way, the new indicator derived from the high-frequency oil

price data can still improve on the inference of unobservable volatility states substantially,

as will be shown in Section 3.

In particular, I construct the following state-space model for volatilities with three mea-

surement and one state equations:

Measurement equations y∗2,t = 2× log(h2,t) + log(ε22,t), (6)

ỹ3,t = λ log(h2,t) + h3,tε3,t, (7)

log(R̂V t,M) = 2× log(h2,t) +

√√√√ ν

M

ÎQt,M

R̂V
2

t,M

ξt, (8)

State equation log h2,t = µ2 + ρ2 log h2,t−1 + η2,t. (9)

Equation (6) results from transforming the real oil price (y2,t) equation in the VAR based on

the mixture Normal treatment of Kim et al. (1998), where y∗2,t ≡ log({At(yt−[Xt log ht]
′[β λ])}2+

c) after squaring and taking logarithms.9 Equation (7) is the economic activity equa-

tion in the VAR after subtracting lags of endogenous variables, i.e., the third equation of

ỹt ≡ At(yt−X ′tβ) = AtΛ log(ht) + Σεt, and is included since economic activity is modeled to

9A small offset constant c is added to avoid the case that At(yt − [Xt log ht]
′[β λ])2 is too small and thus

a logarithm is not well-defined. It is set to be 0.001.
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be affected by oil price uncertainty (log h2,t).

Observation equation (8) is derived from the asymptotic distribution of a general class of

consistent realized volatility estimators (R̂V t,M) of the volatility state, h2,t, i.e.,
√
M(R̂V t,M−

h22,t)→D N(0, ν·IQt), whereM is the number of days in each quarter, ν is a known asymptotic

variance factor, and IQt is the asymptotic variance of the realized volatility estimator. In

particular, I use the jump-robust median realized volatility estimator (MedRV) of Andersen

et al. (2009) as R̂V t,M .

Then applying the Delta method yields,

√
M
log(R̂V t,M)− log(h2,t)

2√
ν

ÎQt,M

R̂V
2

t,M

→D N(0, 1).

where ÎQt,M is a consistent estimator of IQt.

Approximating the above distribution results in equation (8). In short, the observed

realized volatility is considered as a function of the unobserved stochastic volatility, and pro-

vides additional information that otherwise would not have been available, and consequently

improves on the efficiency.10

The key feature due to the incorporation of the realized volatility series is the appearance

of the new measurement equation (8). In particular, for the earlier period during which daily

data is not available, the state-space model consists of equations (6), (7), and (9), and in

the later period, the model also includes equation (8). In this way, it is possible to make

use of the extra information content of realized volatility as soon as the high frequency data

become available.

To show the improvement in efficiency more clearly, I will estimate both the benchmark

VAR with equation (8) and the VAR without equation (8), and present both results for

10More detailed explanations about the Kalman filter setup are provided in Appendix B and C along with
notes on the estimation algorithm.
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comparison; as a brief preview, the coefficients in the VAR exhibit higher precision, not to

mention oil price volatility. Together with realized volatility, this paper estimates a reliable

world oil price uncertainty series for an extended time period starting from 1958Q2.

2.3 Bayesian estimation strategy

The benchmark VAR model is estimated using Bayesian methods to assess the joint posterior

distribution of the parameters of interest, unobserved states and hyperparameters. Bayesian

estimation is a natural choice as the model has several state variables appearing non-linearly

in the measurement equation. As pointed out by Primiceri (2005, pp.826), classical likelihood

methods may not be the optimal choice when high dimensionality and nonlinearity exist in the

model due to the danger of having multiple local peaks in the likelihood function. Bayesian

methods, on the other hand, deal with this type of problem particularly well by separating

the parameter space into several blocks, which simplifies the estimation process to a great

extent. Thus the Markov Chain Monte Carlo (MCMC) algorithm, particularly the Gibbs

sampling procedure, is applied to draw from a series of conditional posterior distributions

of parameter blocks. Furthermore, this algorithm is expedited by imposing conjugate prior

distributions. Each step of the algorithm can be found in Appendix C and the details on

priors are in Appendix D.

3 Results

3.1 The estimated effect of oil price uncertainty

Figure 1 displays the posterior distribution of λ and column (1) of Table 1 reports the

summary statistics for the benchmark model. Most of the posterior draws of λ range below

zero; the mean of the coefficient λ is −0.1136, the standard deviation is 0.0514, and 98.89%

of λ draws are negative. In fact, the high probability of a negative λ suggests that oil price
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uncertainty alone can hamper economic activity when increased to a higher level. This result

further confirms that not only oil price movements but also changes in oil price uncertainty

matter, supporting the non-linearity in the oil price - macroeconomy relationship.

To better understand this result, it is instructive to study a specific episode in 1980s. The

mid-1980s is recorded as the first period when the non-linear relationship between oil prices

and real economic activity became apparent. At that time, world oil consumption declined

as a consequence of the oil crises in the 1970’s that led to improved energy efficiency. On

the other hand, there was added production particularly from Iran and Iraq to finance their

lingering war. In an effort to keep the prices from falling further, Saudi Arabia cut back its

production during the early 1980s; however, in 1986Q1, Saudi Arabia reversed its decision

and started pumping more oil. Consequently, the over-production and the reduced demand

for oil resulted in a huge price drop; the real price of oil fell from $24.5 in 1985Q4 to $17.4

in 1986Q1.11 This unexpected oil price decrease resulted in a drastic jump of oil price

uncertainty by 100%, i.e., from 14.11%-points to 31.79%-points, according to the median of

the posterior draws of oil price volatility.

While the mid-1980s price collapse would have been expected to stimulate oil consump-

tion, and thus, output, the global economy in general did not experience the anticipated

expansion. Based on the empirical analysis of this paper, one likely reason for the moderate

growth was the unusually rapid and severe increase in oil price uncertainty.

Figure 2 shows the histogram of possible realizations of economic growth in 1986Q1 im-

plied by the posterior distribution of λ, assuming that the oil price uncertainty had remained

at the same median level as in 1985Q4, i.e., 14.11%-points instead of 31.79%-points. Had

this been the case, the model would have predicted the median quarterly global industrial

production growth rate to be 0.9348%, which is about 0.1%-point higher than the predicted

rate with the uncertainty surge, 0.8443%.12

11For a more detailed history of 1980’s, see Downey (2009)(pp.19) and Hamilton (2011)(pp.17-18).
12The actual growth rate of global industrial production in 1986Q1 was 0.7788%.
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3.2 The importance of including realized volatility

Next, I re-estimate the VAR, but without the extra information from the additional un-

certainty indicator to illustrate clearly the contribution of augmenting the VAR by realized

volatility. That is, equation (8) is omitted from the state-space model for the entire sample

period to compare the effect of including the realized volatility series.13 Figure 3 plots the

times series of oil price uncertainty obtained (i) from the benchmark VAR estimation and

(ii) from the condensed model without equation (8) with 95% error bands. The difference

in the size of the error bands is striking. In the upper panel where two oil price uncertainty

indicators are used, the error band becomes much narrower from 1983 onwards when addi-

tional information content becomes available.14 By contrast, the lower panel exhibits much

larger error bands for the whole sample period, though the median (solid line) does not differ

very much. Therefore, augmenting the model by including realized volatility substantially

improves the inference of the posterior distribution of oil price uncertainty.

Next, column (2) of Table 1 presents summary statistics of the posterior distribution of

λ when equation (8) is omitted. The point estimate (−0.1995) implies a negative impact of

oil price uncertainty, which is consistent with the baseline result, although the mean is larger

in size (in absolute value). However, it is estimated with less precision, i.e., the standard

deviation is 0.0709, compared to 0.0514 in the baseline case. Thus, another benefit of having

the additional information from the high frequency data is that the posterior distribution of

λ has become more centered.

Figure 4 shows the median of the oil price uncertainty time series recovered from the

benchmark model. Oil price uncertainty jumps up during the periods of the first oil shock

13As noted above, the new measurement equation (8) derived from realized volatility plays a role of being an
additional uncertainty indicator only when drawing oil price volatility state in the Gibbs sampler algorithm.
Hence, it is perfectly feasible to estimate the VAR without having the equation; one can simply omit equation
(8) and run Kalman filter with equations (6), (7), and (9) for the entire sample period.

14In addition, one can also observe the improvement in precision in the period before than 1983, as a result
of the smoothed draws from the forward and backward Kalman filter recursions.
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and Iranian revolution followed by Iran-Iraq War. Next, as seen in the above illustration,

uncertainty doubles in 1986Q1, accompanied by the modest growth rate in industrial pro-

duction. Furthermore, the last two quarters in 1991 exhibit the highest oil price uncertainty,

which coincide with the First Persian Gulf War. Price volatility in general remains elevated

in the 1990’s and 2000’s, peaking up during the historical episodes such as East Asian Crisis

and the Second Persian Gulf War.

3.3 Dynamic effects of an oil price uncertainty shock

Suppose oil price uncertainty increases unexpectedly and substantially without affecting the

actual price series. This may be the case when, for example, economic agents fear a much

higher oil demand and/or oil depletion in the future that have not yet led to any notice-

able changes in the current oil market. Thus there is no significant variation in the first

moment, but the underlying distribution of the oil price has become more dispersed and

hence, uncertain. Broadly speaking, the uncertainty shock shares some similarity with the

oil-specific demand shock in Kilian (2009) and the speculative demand shock in Kilian and

Murphy (2010) in the sense that it does not reflect any current changes in fundamentals, e.g.,

oil supply disruptions due to geopolitical turmoils and/or demand shifts due to economic ex-

pansions, but are related to expectations about the future. However, while the above shocks

triggers an increase in the oil price, the uncertainty shock refers to a more exogenous change

in uncertainty without implying any variation in the actual price level. It can also reflect

cases of small market disruptions which are not associated with any distinct movements in

the oil production and/or price. In sum, the uncertainty shock mainly describes unexpectedly

heightened chance of facing an extreme price change.

For example, during the first half of 2003 that lies in between the two red vertical lines in

Figure 5, the Middle East has undergone the strikes in Venezuela and the Second Persian Gulf

War. Although both oil production and oil price were only modestly affected for a relatively
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short period of time compared to previous unrests, the uncertainty measure indicates that

these episodes were associated with a doubling of oil price uncertainty, i.e., from 12.18%-

points (2002Q4) to 25.36%-points (2003Q1). This period is a good example of the uncertainty

measure moving differently from the oil price level, which can be easily modeled using the

stochastic volatility, emphasizing the advantage of the framework developed in this paper.

At this time, the global industrial index exhibits a short-lived dip (2003Q2) for which oil

price uncertainty may have played an important role. Hence, I further investigate impulse

responses to the oil price uncertainty shock.

The impulse responses implied by this kind of uncertainty shock have not been explored

so far in the related literature, mainly because the statistical models in the previous papers

are based on the GARCH framework. In that case, uncertainty cannot change alone without

assuming specific variations in the level of oil prices. In fact, GARCH models by definition

do not allow any free driving variable in the volatility generating process and thus, one has

to specify changes in the level first, which consequently increase volatility, in order to study

the effect of an uncertainty shock.

In contrast, stochastic volatility enables the investigation of the consequences of an unan-

ticipated oil price uncertainty increase itself on economic activity, independent of any other

change in the oil price level. This is due to the volatility generating process which has its

own free parameter (ηt in equation (5)) that permits exogenous innovations to uncertainty.

The specifics of this exercise are as follows: I generate a one-time oil price uncertainty

increase by 100 percent. Since oil price uncertainty is included in the mean equation of the

VAR in logs, this is equivalent to having the log oil price uncertainty increase by one unit. As

an illustration, the doubling of uncertainty is comparable to what happened during the first

oil shock in 1973Q4 and 1986Q1, according to the posterior draws of volatility. This shock

will be highly persistent over time, as reflected in the posterior distribution of ρ2,
15 and the

15The point estimate of the oil price volatility AR(1) coefficient ρ2 is 0.9590 (with the standard deviation
0.0221), confirming the prior belief that oil price volatility follows a process close to unit root. In case of oil
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uncertainty series comes back to its normal path very slowly. Again, it is worth noting that

it is not necessary to consider any innovations in the oil price level as the uncertainty shock

does not imply any first moment movements.

Figure 6 shows the median impulse responses to a 100-percent increase in oil price un-

certainty over a 12-quarter horizon. As oil price uncertainty is negatively correlated with

economic activity, a shock which unexpectedly increases oil price uncertainty would result in

a drop in the industrial production growth rate. Confirming this view, a doubling of oil price

uncertainty yields an immediate drop of approximately 0.11%-point in the global industrial

production growth rate in the same quarter. In other words, the exogenous doubling of oil

price uncertainty alone can decrease real economic activity growth by almost 0.4%-point an-

nually. This negative response remains very persistent over the 12-quarter horizon due to the

close-to-unit root characteristics of the oil price volatility process, although the oil price level

responds little. Finally, oil production decreases slightly along with the drop in industrial

production through the oil price uncertainty channel.

3.4 Sensitivity Check

Structural break in the oil market

In this section, I first look at whether the structural break in the oil market detected in

the mid-1980’s would change the way oil price uncertainty affects real economic activity. A

number of recent studies asserts that oil price shocks affect economic activity far less than

they did in the past, e.g., Blanchard and Gaĺı (2007), although no consensus on the existence

of a break has emerged so far(e.g., Ramey and Vine (2010)). If there was a structural break

that the model did not account for, then the negative oil price uncertainty coefficient might

have resulted from averaging out the weakened price effects throughout the whole sample

production volatility, the posterior distribution of ρ1 is much less persistent with mean 0.5287 and a standard
deviation of 0.1670. Finally, the point estimate of the economic activity volatility AR(1) coefficient is 0.2807
and the standard deviation is 0.0988.
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period. Or, it is also possible that the structural change may have been so fundamental that

the oil price uncertainty effect might also have been moderated after the structural break as

did the oil price level impact.

Hence, in order to control for possible changes in the oil market, I first add an indicator

variable for 1984Q1 in the right hand side of the main VAR, which is the quarter with the

structural break presented in Blanchard and Gaĺı (2007). Second, I split the sample period

into two, one until 1983Q4, the other from 1984Q1 onwards, and repeat the VAR estimation

for different sample periods.16

Tables 2 and 3 report the summary statistics of the posterior λ draws of the above specifi-

cations. All three posterior distributions of λ show high probabilities of λ being negative, and

furthermore, the means are in line with the baseline result. Although standard deviations,

particularly during the first subsample period, are generally larger due to the smaller number

of observations, it is apparent that oil price uncertainty has had consistent negative effects

on world economic activity throughout the whole sample period.

Effects on advanced economies

Second, I use the industrial production series of advanced economies (1957Q1-2010Q1) in-

stead of that of the global economy. The first column of Table 4 reports the summary

statistics of the posterior λ draws. The point estimate, −0.1154, is very similar to that of

the global economy, and the posterior distribution is in a similar range with a very high

chance that λ is negative (95.09%). This result is somewhat predicted considering the size

of advanced economies in world economy. It also confirms and extends the results in Elder

and Serletis (2010) and Bredin, Elder and Fountas (2010) obtained using the U.S and G-7

countries’ various real economic activity data, since all of the countries examined in their

16For this exercise, the main VAR is run without including equation (8) of realized volatility. The reason
for excluding realized volatility is that the realized volatility series starts only from 1983Q1, and thus only
four observations are available for the first subsample. Hence, to treat the two subsamples equally, I exclude
equation (8) for both periods.
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papers are advanced economies.

In the second column of Table 4, I present the advanced economies’ result without in-

corporating realized oil price volatility data, which is comparable to the result in column

(2) in Table 1. This is to confirm that the efficiency gain from including realized volatility

can be found consistently across different country coverages. The point estimate of λ shows

weaker association, but is well within the range. More importantly, the posterior distribu-

tion appears to be more dispersed with lower precision without realized volatility, similar

to the global economy’s case. This highlights the efficiency gain achieved by the additional

oil price uncertainty indicator. Moreover, the realized volatility estimator also helps recover

more reliable historical oil price uncertainty series as it does for global economy, though the

posterior distributions are not presented here.

Changes in oil price series

Next, I rerun the estimation procedure using different oil price series than the Imported

Refiners’ Acquisition Cost (IRAC) of crude oil as the world oil price series. Columns (1)

and (3) of Table 5 report the benchmark model estimation results obtained from using West

Texas Intermediate (WTI) as a world oil price series. Affirming the baseline result, oil

price uncertainty reduces economic growth both in global and advanced economies in all

estimations. Furthermore, comparing columns (1) and (2), and (3) and (4), one finds the

extra information obtained from daily oil price series again helps obtaining more centered

posterior distributions of λ with the smaller standard deviations, although the efficiency gain

is not as evident as the cases when IRAC is used in the VAR.

Measurement error of the realized volatility estimator

Finally, I re-estimate the benchmark VAR, multiplying a constant m to the theory-predicted

measurement error (i.e.,

√
νÎQt,M/MR̂V

2

t,M) in equation (8), giving data a chance to deter-
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mine the actual size of the error. In other words, since the new measurement equation (8)

is based on the approximation of the asymptotic distribution, the drastic improvement in

oil price uncertainty estimation might have potentially come from forcing the measurement

error to be infinitesimal although it may not be the case in a small sample. Hence, equation

(8) is substituted by

log(R̂V t,M) = 2× log(h2,t) + m×

√√√√ ν

M

ÎQt,M

R̂V
2

t,M

ξt.

If the approximation of the generic asymptotic distribution is not imposing too strong

a restriction, m should be arbitrarily close to one as the data sampling frequency becomes

infinitesimally small. Table 6 presents the summary statistics of m, and the posterior draws

have the mean 1.18 and the standard deviation 0.59, confirming the model’s robustness.

In sum, the baseline result that increases in oil price uncertainty are detrimental to eco-

nomic activity is consistent even when potential structural changes in the oil market are

accounted for. Moreover, it is also applicable to the advanced economies’ case, and is insen-

sitive to different combinations of oil price series. Furthermore, the statistical improvement

achieved by having realized volatility conforms to the baseline result, consistently shown

across different data sets. In addition, the improvement does not seem to be forcefully driven

by the small measurement error predicted by the asymptotic distribution of the realized

volatility estimator.

4 Conclusion

This paper investigates how oil price uncertainty affects global real economic activity during

1958Q2 - 2008Q3 using a VAR model with time-varying stochastic volatility in mean; oil

price uncertainty has significant negative effects on real economic activity measured by the
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industrial production index, extending the previous studies’ findings at the national level

(e.g., Elder and Serletis (2010) and Bredin et al. (2010)). In contrast to the earlier studies,

this paper shows that high oil price uncertainty alone can significantly reduce the industrial

production growth, independent of actual price level changes. This result is robust to the use

of the different oil price series, when considering the possible structural break in mid-1980’s,

and holds for advanced economies as well.

The main contribution of this paper is to develop a framework that can separate the

first and second moment effects. This is done by modeling oil price volatility as stochastic

volatility and including it directly in the mean equations of the VAR. Stochastic volatility

by definition allows an innovation term for volatility itself, and thus, makes it possible to

examine the effect of volatility more flexibly without having to presume any changes in the

level. This is not feasible in the approach using a GARCH model as in many of previous

studies since the GARCH process models changes in volatility to be completely determined

by changes in the level. The proposed framework with stochastic volatility can also be applied

to a number of other cases to examine the dynamic effects of time-varying uncertainty, such

as the investigation of the effect of exchange rate uncertainty on trade flows, the relationship

between inflation volatility and output, and so on.

Another methodological contribution of this paper is to extend the framework by Dobrev

and Szerszen (2010) who find that there is a significant efficiency gain in estimating time-

varying volatility when the realized volatility series constructed from high frequency data

is augmented with stochastic volatility of lower frequency. This paper extends their frame-

work to be applicable to the case where high frequency data is available only for a limited

sub-period of the sample by implementing a time-varying Kalman filter. As a result, the

historical oil price uncertainty series is estimated with substantial improvement in precision,

and the overall statistical inference becomes more significant. This improvement is observed

consistently in case of advanced economies, and robust to the use of the different oil price
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series.

With the novel framework, this paper explores another channel of non-linearity in the

propagation mechanism of the oil price shocks with the specific focus on the effect of oil price

uncertainty. Overall, the findings of this paper highlights the importance of tracking and

accounting for oil price uncertainty in the oil price-economic activity relationship.
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A Data

I use the real U.S. refiners’ acquisition cost of imported crude oil (IRAC) as in Baumeister

and Peersman (2012) as a measure of the world oil price series. This nominal series is

a volume-weighted average price of all crude oils imported into the United States over a

specified period, and was provided by Baumeister. Since the U.S. imports more types of

crude oil than any other country, this series is often regarded as a good proxy of the world

crude oil price. One caveat of this series for this paper is that it is provided at a monthly

frequency at most. This means that the same series cannot be used when constructing the

realized volatility series that requires daily price data. Thus, daily WTI is used to estimate

realized volatility of each quarter starting from 1983. The IRAC is originally taken from the

Department of Energy (DoE) and deflated by the U.S. CPI, the WTI series is retrieved from

the Global Financial Database after adjusting for inflation, and hence, the real price of crude

oil is obtained.

With respect to world economic activity, I use the world index of industrial production

series spanning from 1947Q1 to 2008Q3, of which the first 40 observations are used as a

training period to construct prior distributions.17 This index covers global industrial activities

in mining and quarrying, manufacturing and electricity, gas and water supply. The advanced

economies’ industrial production index series used later in the robustness check section is

taken from International Financial Statistics of International Monetary Funds from 1957Q1

to 2010Q1.18 Again, the first 40 observations are used as training period.

17This data series is also provided by Christiane Baumeister and is used in Baumeister and Peersman
(forthcoming) The original source of world index of industrial production is the United Nations Monthly
Bulletin of Statistics, from which a coherent series is constructed by Baumeister by re-weighing and seasonally
adjusting the raw data. The series can be obtained by contacting Baumeister at CBaumeister@bank-banque-
canada.ca. For more detailed explanations on each series, see the not-for-publication Appendix of Baumeister
and Peersman.

18The coverage of this index is similar to that of world industrial production index, i.e., the index comprises
mining and quarrying, manufacturing and electricity, and gas and water, according to the UN international
Standard Industrial Classification (ISIC) and is compiled using the Laspeyres formula. The list of “advanced
countries” are : Australia, Austria, Belgium, Canada, Cyprus, Czech Republic, Denmark, Finland, France,
Germany, Greece, Hong Kong SAR, Iceland, Ireland, Israel, Italy, Japan, Luxembourg, Malta, Netherlands,
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The world oil production data provided by Baumeister is originally obtained from the DoE

starting January 1973, from the Oil & Gas Journal for the period April 1953 to December

1972, and the earlier series from January 1947 is interpolated from yearly oil production

data.19 Later for the sensitivity check with advanced economies, I add quarterly observations

during the period October 2008 to March 2010 from the DoE. Quarterly data are averages

of monthly observations.

B Realized Volatility

As shown in Dobrev and Szerszen (2010), there is a high efficiency gain when the information

content from high-frequency data is additionally used in estimating the oil price volatility

state. In the context of my paper, high-frequency data refers to daily oil price changes

compared to the quarterly price series used in the main VAR. However, since a daily oil price

price series is not available for the entire sample period, I use a time-varying state space

model to solve the problem of the data shortage in the early period.

I begin by estimating realized volatility of each quarter by using the jump-robust median

realized volatility estimator (MedRV) of Andersen et al. (2009) for the period when the daily

price variation is observable as:

R̂V t,M = MedRVt,M

=
π

6− 4
√

3 + π

(
M

M − 2

)M−1∑
i=2

med(|∆OPi−1|, |∆OPi|, |∆OPi+1|)2.

Here, M is the number of days in each quarter that oil is traded, and ∆OPi denotes the

New Zealand, Norway, Portugal, Singapore, Slovak Republic, Slovenia, South Korea, Spain, Sweden, Switzer-
land, Taiwan Province of China, United Kingdom and the United States. I apply the X-12-ARIMA of the
U.S Census to adjust for the seasonality of the series.

19As noted by Baumeister and Peersman (2012), the use of interpolated data in the earlier periods is of
minor importance, as this part of the data set is mostly used in the training sample to construct priors that
is dominated in the algorithm fairly quickly by the data.
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observed daily change of the logarithmic oil price in quarter t with i = 1, 2, ...,M . MedRV is

a consistent estimator of the population variance which is equivalent to h22,t in this paper.20

Hence, MedRV can become an extra oil price uncertainty indicator.

Then the central limit theorem implies the following generic asymptotic results:

√
M(R̂V t,M − h22,t)→D N(0, ν · IQt)

where ν is a known asymptotic variance factor, i.e., 2.96 for MedRV, and IQt is the integrated

quarticity controlling the precision of the realized volatility estimators. By applying the Delta

method with a consistent jump-robust estimator ÎQt,M of IQt,
21 we get

√
M
log(R̂V t,M)− log(h2,t)

2√
ν

ÎQt,M

R̂V
2

t,M

→D N(0, 1).

When obtaining the above asymptotic results, the log transformation is conducted which

makes it very simple to augment the main VAR with realized volatility. With this result, I

write a new measurement equation (i.e., equation (8) in Section 2.2) which is added into the

step in the Gibbs sampler algorithm to estimate oil price uncertainty :

log(R̂V t,M) = log(h22,t) +

√√√√ ν

M

ÎQt,M

R̂V
2

t,M

ξt,

where ξt follows the standard Normal distribution and is independent of the underlying

process. Note that log(R̂V t,M) and

√
νÎQt,M/MR̂V

2

t,M can be readily computed provided

20See Huang and Tauchen (2005); Dobrev and Szerszen (2010) for more detail.
21I estimate IQt by the median realized quarticity estimator (MedRQ) for each quarter such that

ÎQt,M = MedRQt,M

=
3πM

9π + 72− 52
√

3

(
M

M − 2

)M−1∑
i=2

med(|∆OPi−1|, |∆OPi|, |∆OPi+1|)4.

25



a high frequency data series. Therefore, in addition to the measurement equations (6) and

(7), I use the above measurement equation for the period during which daily oil price data

is observable. In sum, a time-varying state-space model is constructed to generate smoothed

draws of volatility states. A more detailed description on how to obtain draws from the

posterior distribution of {h2,t}Tt=1 inside the Gibbs sampler algorithm is provided in Appendix

C.22

C Gibbs sampler algorithm

When it is not feasible to analytically derive the joint posterior distribution due to the model’s

high dimensionality and non-linearity, the Gibbs sampler algorithm provides a computation-

ally tractable way of simulating the posterior distributions. The Gibbs sampler algorithm

repeatedly draws the parameters after separating them into several blocks whose conditional

posterior distributions are known, and after iterating the chains for a sufficiently long time,

the draws will be equivalent to those from the joint posterior distribution. The first 30,000

“burn-in” draws are discarded in order to eliminate the possible impact of initial values and

to ensure the chain mixes well. Then the following 15,000 draws are collected, and thus,

45,000 iterations in total are conducted for each analysis.

Step 1: Drawing coefficients of lags (β) and of uncertainty (λ)

Given aT , hT , yT and other hyperparameters, this step is equivalent to regressing yt on

[Xt log ht]. This step is further expedited with the independent conjugate Normal priors,

whose parameters are based on the homoskedastic OLS regression result of the training

period. The error term of this step is heteroskedastic; however, given all the values of aT

and hT , the error covariance and variance matrices are completely known in this step as they

22I use MedRV and MedRQ estimators by Andersen et al. (2009), but the result does not change when
different realized volatility estimators are used.
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consist ΩT .

Step 2: Drawing covariance states (a) and hyperparameter S

Conditional on β, λ, hT , Y T and other hyperparameters, the following provides the mea-

surement equations for covariance states aT with the observable heteroskedastic innovation

ut :

At(yt − [Xt log ht]
′[β λ]) = Atut = Σtεt.

This transforms the problem to a standard linear Gaussian state space model with state

equation (3) shown in Section 2.1. Now, the elements of aT are divided into two sub-groups,

a1 ≡ {a21,t}Tt=1 and a2 ≡ {a31,t, a32,t}Tt=1, and drawn in turn from the following two state-space

models, i.e.,:

a21,t = a21,t−1 + e21,t e21,t ∼ N(0, S1)

u2,t = −u1,ta21,t + ε2,t ε2,t ∼ N(0, h22,t)

and  a31,t

a32,t

 =

 a31,t−1

a32,t−1

+

 e31,t

e32,t


 e31,t

e32,t

 ∼ N(0, S2)

u3,t = −u1,ta31,t − u2,ta32,t + ε3,t ε3,t ∼ N(0, h23,t).

After the transformation, one can now obtain the conditional mean ai,t|t−1 and the con-

ditional variance Pi,t|t−1 using the standard forward Kalman filter method up to T for each

sub-group of a. Then the backward recursion is conducted which considers the information

content of the entire sample in order to collect smoothed draws. Note that the last itera-
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tion of the forward Kalman filter yields ai,T |T and Pi,T |T . One can draw a last state, ai,T |T ,

from N(ai,T |T , Pi,T |T ), which then feeds back into the backward recursion algorithm to get

ai,T−1|T and Pi,T−1|T . This is repeated until t = 1 by updating the conditional mean and the

conditional variance as following23 :

ai,t|t+1 = ai,t|t + Pi,t|tP
−1
i,t+1|t(ai,t+1 − ai,t),

Pi,t|t+1 = Pi,t|t − Pi,t|tP
−1
i,t+1|tPi,t|t.

After drawing aT , the elements of hyperparmeter S are sampled from the inverse-Wishart

posterior distributions by updating the innovations which are observable given the new aT

draws.

Step 3: Drawing volatility states (h) and hyperparameter W

Conditional on other parameter values, drawing the volatility state hT becomes a non-linear

and non-Gaussian state-space problem. Since ht is modeled to follow a log Normal distribu-

tion, it is not possible to use the standard linear state-space model applied in the previous

step. Moreover, log h2,t appearing in the third mean equation of the main VAR multiplied

by λ complicates this stage further. Therefore, I apply a log transformation to linearize the

system and then use the mixture Normal treatment by Kim et al. (1998). In particular,

the entire history of each element of the vector hTi is drawn one after another starting from

hT1 . After hT1 is sampled, sampling hT2 is in order, which requires the use of a time-varying

Kalman filter and smoother depending on the data availability of the high-frequency oil price

series. Finally, hT3 can be drawn based on the updated value of hT2 . This procedure requires

the variance covariance matrix W to be diagonal since we implicitly disregard the possible

effect of a correlation between hTi ’s.

The procedure in common for hT1 and hT2 starts by obtaining the first two elements of

23See Carter and Kohn (1994) for more details on the use of Gibbs sampler for a state space model.
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the orthogonalized innovation, i.e., At(yt − [Xt log ht]
′[β λ]) = Σtεt. Conditional on aT

draws from the previous step and all other values, the elements are now observable. Then

to linearize the equations, I take logarithms after squaring both sides and adding an offset

constant c to the left hand sides.24 Then, the following state-space models are obtained for

hT1 and hT2 , respectively, i.e., :

log h1,t+1 = µ1 + ρ1 log h1,t + η1,t+1

y∗1,t = 2 log h1,t + log(ε21,t)

and

log h2,t+1 = µ2 + ρ2 log h2,t + η2,t+1

y∗2,t = 2 log h2,t + log(ε22,t)

ỹ3,t = λ log(h2,t) + h3,tε3,t

where y∗i,t is the first two elements of the vector log({At(yt− [Xt log ht]
′[β λ])}2 + c) after the

transformations. Next, economic activity equation is included in the Kalman filter step after

subtracting the effect of lags of the endogenous variables from y3,t, i.e., the third equation of

ỹt ≡ At(yt −X ′tβ) = AtΛ log(ht) + Σεt, since oil price uncertainty (h2,t) appears in the mean

equation of y3,t. The number of measurement equation increases to three during the period

when the daily oil price series is available by adding equation (8) as described in detail in

Section 2.2 and Appendix B.

The above linear system is still non-Gaussian as the distribution of log(ε2i,t) follows

logχ2(1), and thus approximated by mixing seven different Normal distributions as Kim

24An offset constant is added since squared value of the right hand side can be infinitesimal, and thus log
transformation may not be well defined. Following the previous literature, I set c to be 0.001.
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Table A1: Seven Normal distributions for log(ε2i,t)

s qj = Pr(s = j) mj v2j
1 0.00730 -10.12999 5.79596
2 0.10556 -3.97281 2.61369
3 0.00002 -8.56686 5.17950
4 0.04395 2.77785 0.16735
5 0.34001 0.61942 0.64009
6 0.24566 1.79518 0.34023
7 0.25750 -1.08819 1.26261

et al. (1998) and Primiceri (2005). In doing so, an indicator variable si,t is assigned for each

time period t, which determines the particular Normal distribution by which the distribution

of log(ε2i,t) is approximated. More specifically, to start the Gibbs sampling algorithm, one

first assigns any number from 1 to 7 randomly to si,t for all i and t for the initial iteration

of the Gibbs sampler algorithm, and applies the forward and backward Kalman filter (as

demonstrated in Step 2) to obtain the first set set of the hT1 and hT2 draws. Then with new

sets of hT1 and hT2 draws, one can update the indicator variables s1,t and s2,t. In particular,

each si,t is independently decided from the discrete density function defined as

Pr(si,t = j|y∗i,t, hi,t) ∝ qjfN(y∗i,t| 2hi,t +mj − 1.2704, v2j ), j = 1, . . . , 7, i = 1, 2. (10)

where the means (mj − 1.2704) and the variances (v2j ) of the seven Normal distributions

are given in Table A1 (see Kim, Shephard and Chib (1998) and the Appendix in Primiceri

(2005)).

With the updated value of hT2 , we are ready to draw the series of hT3 , since the third

element of At(yt − [Xt log ht]
′[β λ]) is now observable. Denote this element as ŷ3,t. Then,

the state-space model becomes as follows :

log h3,t = µ3 + ρ3 log h3,t−1 + η3,t

y∗3,t = 2 log h3,t + log(ε23,t).
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where y∗3,t = log((ŷ3,t)
2 + c). This step is also completed by sampling the new values of s3,t

according to (10), which will be used in approximating the distribution of ζ3,t in the next

iteration.

Finally, the diagonal elements of the hyperparameter W are drawn one at a time by

updating the differences using the new set of hT draws, as each element of the matrix is

considered to be distributed following the inverse Gamma distribution, and the innovation is

perfectly observable.

D Prior distributions

The conditional priors for the VAR coefficients, time-varying covariance and log standard

deviations are assumed to follow Normal distributions. When obtaining parameter values

that define the prior distributions, the first 40 observations are used as a training period, i.e.,

1947Q2 - 1958Q1. In particular, an OLS regression is run assuming a time-invariant error

structure, from which the resulting point estimates are used to construct prior distributions.

When running the OLS regression for the training period, I use the logarithms of 5-quarter

rolling standard deviation as a proxy for time-varying uncertainty in order to have an estimate

of λ, since it will cause a multicollinearity problem if a constant term and homoskedastic

volatility are included at the same time on the left hand side of the VAR.

The mean of [β λ] prior comes from the OLS estimates and the variance-covariance matrix

of the prior is obtained by multiplying a constant, 4, to the variance of OLS coefficient

estimates, following the specification of Baumeister and Peersman (2012). With respect to

the prior of α and log h, I follow the previous literature (i.e., Primiceri (2005), Benati and

Mumtaz (2007), and Baumeister and Peersman) by applying the Cholesky decomposition

to the variance-covariance matrix and using the diagonal and the lower triangular elements

after standardization.
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Hyperparameters S andW , which govern the variability of α and log h, respectively, follow

Inverse Wishart and Inverse Gamma distributions that belong to conjugate prior family. The

prior distributions of µ and ρ reflect the belief that the log of volatility is so persistent that

the process is close to a random walk, which would be one way of reflecting the modeling

conventions of the previous literature but still giving a chance to the data to determine the

posterior distributions.

Later, I multiply a constant m to

√
ν ÎQt,M/M R̂V

2

t,M in equation (8) for a sensitivity

check to determine how large the measurement error of the realized volatility actually is

relative to what is predicted by the generic asymptotic distribution. When doing so, I

impose the inverse-Gamma(2,2) prior with prior average of 1, reflecting the belief that the

measurement error of the sample will be indeed close to what the asymptotic distribution

predicts on average.

Table A2 summarizes all of the prior distributions used in the estimation.

Table A2: Prior distributions

[β λ] N([β̂OLS, [λ̂OLS], 4 · V ([β̂OLS, λ̂OLS]))
a N(âOLS, 10 · V (âOLS))

logh0 N(log ĥOLS, log ĥOLS/ĥ
2
OLS)

[µi ρi] N( [0 1], 0.05 · I2)
S1 IW (V (â1,OLS), 2)
S2 IW (V (â2,OLS), 3)
w IG((0.01)2/2, 1/2)
m IG(2, 2)
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Table 1: Summary statistics of posterior λ draws - Global economy

(1) (2)
Main OP series IRAC IRAC

RV series WTI n/a
mean −0.1136 −0.1995

std. dev. 0.0514 0.0709
95% interval [−.216,−.014] [−.341,−.064]
P (λ < 0) 98.89% 99.99%

This table shows the summary statistics of the 30, 000 posterior λ draws. Column (1) is
the result from the benchmark VAR model that makes use of the additional measurement
equation (8) obtained from the asymptotic distribution of the realized volatility estimator.
Column (2) is the result from the VAR model after excluding equation (8).

Table 2: Robustness check - 1984Q1 dummy

λ
mean −0.1495

std. dev. 0.0763
95% interval [−0.3191, −0.0202]

P(λ < 0) 99.15%

This table reports the summary statistics of the posterior λ draws when the dummy variable
for 1984Q1 is included in the right hand side of the main VAR. The inclusion of 1984 dummy
variable is to see whether the effect of uncertainty remains when considering the structural
change in 1984 as noted in Blanchard and Gali (2007).

Table 3: Robustness check - Split sample VAR

λ ∼1983Q4 1984Q1∼
mean −0.1115 −0.1310

std. dev. 0.1508 0.1036
P(λ < 0) 78.8% 89.6%

This table reports the summary statistics of the posterior λ draws for two subsample periods.
The subsample periods is split before- and after- 1984Q1 and the main VAR is run without
including equation (8) of realized volatility. The exclusion of realized volatility is because
the realized volatility series starts only from 1983Q1, and thus there is only four observation
available for the first subsample period. Hence, to treat two subsample period as equal as
possible, I exclude equation (8) for both periods. Again, this exercise is to see whether the
effect of uncertainty differs when the structural change in 1984 noted in Blanchard and Gali
(2007) is considered.
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Table 4: Robustness check - Advanced economies
(1) (2)

Main OP series IRAC IRAC
RV series WTI n/a

mean −0.1154 −0.0768
std. dev. 0.0963 0.0838
P (λ < 0) 95.09% 81.38%

This table reports the summary statistics of the posterior λ draws of advanced economies.
As in the global economy’s case presented in Table 1, column (1) shows the result from the
benchmark VAR model augmented with realized volatility, and column (2) is the result from
the VAR model after excluding equation (8).

Table 5: Robustness check - Different oil price series

Global economy Advanced economies
(1) (2) (3) (4)

Main OP series WTI WTI WTI WTI
RV series WTI n/a WTI n/a

mean −0.1087 −0.1887 −0.1711 −0.1903
std. dev. 0.0644 0.0742 0.0734 0.0758
P (λ < 0) 96.27% 98.81% 99.17% 99.35%

This table reports the robustness check results that changes the quarterly real price of crude
oil for the VAR from IRAC to WTI. Columns (1) and (2) are for global economy, and (3)
and (4) are for advanced economy. Columns (2) and (4) repeat the exercise of re-estimating
the VAR without including realized volatility.

Table 6: Robustness check - Multiplication of the parameter m

m
mean 1.1807

std. dev. 0.5932
95% interval [0.4004 2.6825]

This table reports the summary statistics of posterior m draws, that is the parameter mul-
tiplied to the asymptotic measurement error of equation (8) in order to give the data set a
chance to determine the actual size of the measurement error.
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Figure 1: Posterior distribution of λ

Figure 2: 1986Q1 illustration

This panel is a histogram of possible realization of the global industrial production growth
rate in 1986Q1 if oil price uncertainty had not increased at that time. The dotted red line
represents the predicted industrial production growth rate, 0.8423%.
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Oil price uncertainty with realized volatility

Oil price uncertainty without realized volatility

Figure 3: The effect of the augmentation of the extra uncertainty indicator

The posterior distributions of oil price uncertainty from the statistical model of this paper.
The upper panel plots the distribution from the benchmark VAR when the information con-
tent of high-frequency data is incorporated through realized volatility. The lower panel shows
oil price uncertainty from the VAR without using the additional price volatility indicator.
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Figure 4: Historical oil price uncertainty jumps

This figure plots the median of the posterior draws of oil price uncertainty from 1958Q2 to
2008Q3.
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Figure 6: Impulse responses to a 100% uncertainty shock

Impulse responses to the shock that doubles the level of oil price uncertainty. Since oil price
uncertainty is included in the mean equation of VAR in logarithm, this means that the log
oil price uncertainty increases by a unit. Thus, the left top panel shows the dynamics of log
of oil price uncertainty over 12-quarter horizon.
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