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Abstract 
 

In the 1988-2004 micro data collected by the U.S. Bureau of Labor Statistics for the CPI, 
price changes are frequent (every 4-7 months, depending on the treatment of sale prices) and 
large in absolute value (on the order of 10%).  The size and timing of price changes varies 
considerably for a given item, but the size and probability of a price change are unrelated to 
the time since the last price change.  Movements in aggregate inflation reflect movements in 
the size of price changes rather than the fraction of items changing price, due to offsetting 
movements in the fraction of price increases and decreases.  Neither leading time-dependent 
models (Taylor or Calvo) nor 1st generation state-dependent models match all of these facts.  
Some 2nd generation state-dependent models, however, appear broadly consistent with the 
empirical patterns. 
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1. Introduction 

In time-dependent sticky price models, the timing of individual price changes is 

exogenous.  A firm set its price every nth period (Taylor, 1980) or randomly (Calvo, 1983).  

The Taylor and Calvo models feature exogenous staggering of price changes across firms in 

the economy, and therefore a fixed fraction of firms adjusting their prices each period.  

Moreover, there is no selection as to who changes their price in a given period. 

In state-dependent sticky price models, firms choose when to change prices subject to 

“menu costs.”  Price changes may be bunched or staggered, depending on the importance of 

common vs. idiosyncratic shocks and other factors.  Those changing prices are those with the 

most to gain from doing so. 

Monetary shocks typically have longer lasting real output effects in time-dependent 

pricing (TDP) models than in state-dependent pricing (SDP) models.1  Related, prices 

respond more rapidly to monetary impulses in many SDP models than TDP models.  In SDP 

models a positive monetary shock boosts the fraction of firms changing prices and/or the 

average size of those price changes.  In Dotsey, King and Wolman (1999, hereafter DKW) it 

is predominantly the fraction that responds, whereas in Golosov and Lucas (2007, hereafter 

GL) it is almost wholly the average size of changes (more increases and fewer decreases). 

Because their positive and normative implications can differ so much, it is important 

to empirically distinguish between TDP and SDP models.  To this end, we deploy the micro 

data underlying the Consumer Price Index (CPI) compiled by the U.S. Bureau of Labor 

Statistics (BLS).  The dataset consist of monthly retail prices of individual goods and services 

                                                           
1 See Caplin and Spulber (1987), Caplin and Leahy (1991, 1997), Caballero and Engel (1993, 2006), Dotsey, 
King and Wolman (1999, 2006), Gertler and Leahy (2006), and Golosov and Lucas (2007), among others. 



 2

at specific outlets (excluding shelter) from January 1988 through January 2005.  We 

document the following properties of this dataset: 

Prices change frequently for the median category – every 4 months if one includes sale 

prices, every 7 months if one excludes sale prices.  Price changes are usually big in absolute 

terms (averaging around 10%), although a large subset are much smaller (5% or less).  Even 

for individual items, price durations and absolute price changes vary considerably over time.  

For the typical item, plots of hazards vs. age and size vs. age are pretty flat.  The variance of 

aggregate inflation can be attributed almost entirely to the size of price changes (the intensive 

margin) rather than the fraction of items changing price (the extensive margin).  Underneath 

the comparatively calm overall fraction, the fraction of price increases swells and the fraction 

of price decreases subsides when inflation rises. 

None of the leading TDP or SDP models we examine can explain all of these 

empirical regularities.  The Taylor model collides with the variable length in price spells for 

individual items.  The Taylor and Calvo models predict bigger absolute price changes for 

older prices, when no such pattern exists in the data.  They also have trouble generating 

enough movement in the fraction of price increases vs. decreases with inflation.  DKW 

produces no large price changes, and predicts far too big a role for the extensive margin in 

inflation movements.  GL does not generate enough small price changes.  As we discuss 

briefly in the conclusion, second-generation SDP models such as DKW (2006), Midrigan 

(2006), and Gertler and Leady (2006) fare better vis a vis our evidence. 

In Section 2 we describe the U.S. CPI dataset.  In Section 3 we present a series of 

stylized facts about this dataset.  In Section 4 we compare the predictions of leading TDP and 

SDP models to these facts.  We conclude in Section 5. 
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2. BLS Micro Dataset on Consumer Prices 

To construct the non-shelter portion of the CPI, the BLS surveys the prices of about 

85,000 items a month in its Commodities and Services Survey.2  Individual prices are 

collected by 400 or so BLS employees visiting 20,000 retail outlets a month, mainly across 

45 large urban areas.  The outlets consist of grocery stores, department stores, auto 

dealerships, hospitals, etc.  The survey covers all goods and services other than shelter, or 

about 70% of the CPI based on BLS consumer expenditure weights. 

The BLS selects outlets and items based on household point-of-purchase surveys, 

which furnish data on where consumers purchase commodities and services.  The price 

collectors have detailed checklists describing each item to be priced ⎯ its outlet and unique 

identifying characteristics.  They price each item for up to five years, after which the item is 

rotated out of the sample. 

The CPI Research Database, maintained by the BLS Division of Price and Index 

Number Research and hereafter denoted CPI-RDB, contains all prices in the Commodities and 

Services Survey since January 1988.  We use the CPI-RDB through January 2005, and will 

refer to this as “1988-2004”. 

 
Frequency of BLS Pricing 

The BLS collects consumer prices monthly for food and fuel items in all areas.  The 

BLS also collects prices monthly for all items in the three largest metropolitan areas (New 

York, Los Angeles, and Chicago).  The BLS collects prices for items in other categories and 

                                                           
2 The BLS conducts a separate survey of landlords and homeowners for the shelter portion of the CPI.  The 
sources for this section are the BLS Handbook of Methods (U.S. Department of Labor, 1997, Chapter 17) and 
unpublished documentation for the CPI-RDB (to be described shortly). 
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other urban areas only bimonthly.3  About 70% of observations in our pooled sample over the 

1988-2004 period are monthly price quotes, and the remaining 30% are bimonthly.  We 

concentrate our analysis on the top three areas.  Because our focus is on the endogenous 

timing of price changes, we prefer a longer sample of 205 monthly observations to a pair of 

broader samples with bi-monthly observations.  

 
Temporary price discounts (“sales”)  

According to the BLS, a “sale” price is (a) temporarily lower than the “regular” price, 

(b) available to all consumers, and (c) usually identified by a sign or statement on the price 

tag.  Roughly 11% of quotes in the sample are sale prices.   Sales are especially frequent for 

food items, where they comprise 15% of all quotes (vs. 8% of non-food price quotes).  

Chevalier, Kashyap and Rossi (2003) also observe frequent sales in their analysis of scanner 

data from grocery stores.  They report that sales often generate V-shapes, as the price goes 

down and then returns to the regular (pre-sale) level in the next period.  In the BLS data, 

about 60% of sales exhibit this pattern.  A number of papers, such as Golosov and Lucas 

(2007), Midrigan (2007), and Nakamura and Steinsson (2007), exclude sale prices from their 

analysis.  To facilitate comparison, we will report many statistics for both “posted prices” 

(based on both regular and sale prices) and “regular prices” (based only on regular prices).  

 
Forced Item substitutions 

Forced item substitutions occur when an item in the sample has been discontinued 

from its outlet and the price collector identifies a similar replacement item in the outlet to 

price going forward.  This often takes the form of a product upgrade or model changeover.  

                                                           
3 In Philadelphia and San Francisco the BLS priced items monthly through 1997 and bimonthly thereafter. 
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The monthly rate of forced item substitutions hovers around 3% in the sample.  Essentially all 

item substitutions involve price changes – these are new items at new prices.  Shapiro and 

Wilcox (1996) and Moulton and Moses (1997) point out that substitutions account for about 

half of the inflation rate (a third if one excludes apparel).  As stressed by Bils and Klenow 

(2004), these price changes materially boost the overall frequency of price changes.  We 

include these substitution-related price changes in our statistics, with the sole exception being 

when we show implied durations with and without them to highlight their importance. 

 
Out-of-season items 

Although the Commodities and Services Survey attempts to price 85,000 or so items 

per month, the BLS succeeds in collecting around 74,000 price quotes in the typical month.  

The 11,000 unavailable quotes per month consist of out-of-season items, temporary stockouts, 

and permanently discontinued items.  The BLS categorizes about 5% of the items they 

attempt to price as out-of-season in the average month.  Not surprisingly, the out-of-season 

fraction is particularly high for clothes.  We will compare prices across missing observations 

because doing so matters for the overall frequency of price changes and for getting close to 

the mean inflation rate in the official CPI. 

 
Stockouts 

Even when in season, almost 7% of items are temporarily unavailable in a typical 

month.  The BLS reserves this classification for items that are temporarily out of stock from 

the outlet or at outlets that are temporarily closed.  As we do for out-of-season items, we will 

incorporate prices straddling stockouts. 
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 Outliers  

Although the BLS requires its price collectors to explain large price changes to limit 

measurement errors, some price changes in the dataset appear implausibly large.  We exclude 

price changes that exceed a factor of 10.  Such price jumps constitute less than one tenth of 

one percent of all price changes.  

 

3. Sticky Price Facts 

With our sampling decisions, we arrive at a subsample of the CPI-RDB consisting of 

between 13,000 and 14,000 price quotes a month in the Top 3 areas (New York, Los 

Angeles, and Chicago areas).  We call the longitudinal string of prices for a particular item at 

a particular outlet a “quote-line”.  This includes multiple versions of an item due to forced 

item substitutions.  In our subsample, the mean (median) time between the first and last 

observation in a quote-line is 43 (45) months.  The interquartile range is 24 to 60 months.  

Recall that items are rotated every five years or more frequently.  A quote-line may be 

shorter than 60 months because it is rotated more frequently (e.g., as with consumer 

electronics recently), because its outlet closed or discontinued its category, or because it 

straddles the beginning or end of our sample.  The mean (median) number of price quotes in 

a quote-line is 37 (34) months.  The interquartile range is 18 to 54 months.  The number of 

prices falls short of a quote-line’s lifespan because of temporary stockouts and items being 

out-of-season (especially important for clothing). 

We now document some stylized facts about these prices.  In the subsequent section 

we will compare these facts to predictions of some leading TDP and SDP models. 
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Price changes are frequent 

Using summary statistics from the CPI micro data, Bils and Klenow (2004, hereafter 

BK) estimated the median duration of prices across categories to be 4.3 months for posted 

prices, and perhaps 5.5 months for regular prices.  These durations were considerably shorter 

than the prior consensus of roughly a year between price changes.  Nakamura and Steinsson 

(2007, hereafter NS), using the CPI-RDB, reported notably higher median durations of 8-11 

months for regular prices.  We now estimate our own price durations, with the upshot being 

that even regular prices appear to change every 7 months or so. 

We follow both BK and NS in first estimating the frequency of price changes for 300 

or so categories of consumption known as Entry Level Items (ELIs).  Within these categories 

are prices for particular items (quote-lines).  The BLS has provided us with unpublished ELI 

weights for each year from 1988-1995 and 1999-2004 based on Consumer Expenditure 

Surveys in each of those years.  We normalize the nonshelter portion of the weights to sum to 

1 in each year.  We set the 1996 and 1997 ELI weights to the 1995 weights, and the 1998 

weights to their 1999 level.  We set the 2005 weights to their 2004 level (for January 2005).  

The BLS changed ELI definitions in 1998, so interpolating was not an option.  The CPI-RDB 

contains weights for each price within an ELI.  We allocate each ELI’s weight to individual 

prices in each year in proportion to these item weights to arrive at weights itω  that sum to 1 

across items (i’s) and months in each year.  Thus our statistics weight all years equally. 

As discussed, even if one includes sale prices there are many gaps in the quote-lines.  

If we exclude sale prices this creates additional gaps.  To estimate the frequency of price 

changes using all available observations, we apply a maximum likelihood estimator that takes 

into account the time in between each observed price.  Let { }itp denote the set of log price 
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observations in quote-line i.  Denote itγ  as the gap in months between the price at t and the 

previous observation.  Let itI  be a price-change indicator; 1 if ,  0 otherwise.
itit it itI p p γ−= ≠   

See Figure 1, and note that these variables are defined differently depending on whether we 

are using all (posted) prices or just regular prices.  The monthly Poisson rate of price change 

for a quote-line in category s is Sλ , which is assumed to be common across quote-lines within 

the category (ELI) and across time.  Conditional on the sequence of prices observed, the 

likelihood of observing the itI values in a category is then 

 ( ) ( )11S

it it
it itS S

I I

i s t
L e eλ γ λ γ −− −

∈
= −∏ ∏ . 

The inside product is across prices within a quote-line and the outside product is for different 

quote-lines in category s.  The log-likelihood function is then 

 ( ) ( )ln ln 1 1
S

itS
it it itS

ti s
L I e Iλ γ λ γ−

∈

⎡ ⎤
⎢ ⎥⎣ ⎦

− − −= ∑∑ . 

The first order condition ln / 0S SL λ∂ ∂ =  implicitly defines the MLE estimate � Sλ : 

(3.1) � ( )
1

1
S it

it it
it it

i s t i s t

I
e

I
λ γ

γ γ
∈ ∈

=
−

−∑∑ ∑∑  

For each category we solve this nonlinear equation for � Sλ , applying weights itω  to both sides. 

This method assumes two things, whether the gap between price quotes is a single 

month or longer: if the price does not differ from the previous price then it did not change at 

any point in between, and if the price does differ from the previous price it may have changed 

at any point in between (possibly more than once).  Given that the price often returns to a 

previous level due to temporary “sales”, this method will miss some price changes. 
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Allowing for price changes during gaps in item availability deserves some elaboration.  

We may want to know how often prices change conditional on availability.  When items are 

not available, one should arguably stop the “duration clock” altogether.  Think of the extreme 

case of items out-of-season for half the year or more.   As we shall see, stopping the duration 

clock (setting itγ =1 regardless of the gap) implies modestly more price flexibility than our 

latent price approach.  An advantage of a ticking duration clock, however, is that the shocks 

motivating price changes presumably accumulate over time.  Thus our baseline estimates treat 

unavailable items as if they were available but not sampled by the BLS.  A fuller treatment 

would try to model the gaps to determine the best treatment. 

Once we have frequencies for each category (ELI), we take weighted means or 

medians across categories.   Because the BLS re-defined ELIs in 1998, we estimate the means 

and medians separately for 1988-1997 and 1998-2004, then weight them by 10/17 and 7/17.  

Table 1 provides monthly frequencies and implied durations (inverses of the frequencies).  

For posted prices, the mean (median) frequency across categories is 36% (27%), and the mean 

(median) implied duration is 6.8 (3.7) months.  We do not report standard errors; sampling 

error is small given our sample of roughly 3 million prices.  The median duration of 3.7 

months is actually lower than that in BK.  The BK sample was 1995-1997 for all areas and 

weighted items equally, whereas ours is 1988-2004 for the Top 3 areas with item weights. 

For regular prices, Table 1 reports a mean (median) frequency across categories of 

30% (14%), and a mean (median) implied duration of 8.6 (7.2) months.  As NS emphasize, 

sales are a bigger fraction of price changes for items near the median (13 of the 27 % points) 

than for the mean item (6 of the 30 % points).  Hence BK’s uniform adjustment for sales, 

which yielded a median duration of 5.5 months, understated the importance of sales for the 
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median item.  We find that taking out sales moves the median duration from 3.7 months up to 

7.2 months.  The implied mean duration is less affected, rising from 6.8 to 8.6 months. 

Focusing on regular prices begs the question of whether one should exclude sale prices 

for macro purposes.  This is not obvious.  First, sales may have macro content.  Items may sell 

at bigger discounts when excess inventory builds up or when inflation has been low.  Klenow 

and Willis (2007) find that sale-related price changes are at least as sensitive to inflation as 

are regular price changes.  Second, excluding price changes because they are not macro-

related (e.g., due to idiosyncratic shocks or price discrimination) risks confusing sticky 

nominal prices with sticky information as in Mankiw and Reis (2002).  Third, it is awkward to 

apply a menu cost model to data in which some price changes have been filtered out.  Kehoe 

and Midrigan (2007) eschew this approach, instead modeling one-period price discounts as 

incurring a lower menu cost.  They find that sale-related price changes can contribute to 

macro price flexibility, but not as much as regular price changes.  They focus on grocery 

stores, in which V-shaped sales (which end in the price returning to the previous regular 

price) are most common.  In apparel, the other category with endemic sales, sales typically 

end in regular price changes related to product turnover. 

In a variant of the sticky information hypothesis, one might imagine that firms have a 

sticky plan that involves alternating between a sticky regular price and a sticky sale price.  

The BLS may sometimes catch the regular price and sometimes the sale price.  Because 

comparing regular and sale prices to each other can obscure such rigidity, in Table 1 we 

present a third classification of price changes: those involving “like” prices.  We compare a 

regular price only to the previous regular price, and a sale price only to the previous sale 

price.  We apply MLE estimation as if the regular and sale prices come from separate quote-
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lines within the ELI.  If sale prices are very sticky in nominal terms or relative to regular 

prices, then “like” prices will be at least as sticky as regular prices.  This is not what we see in 

Table 1.  The median frequency of changes in like prices is 17% (vs. 14% for regular prices), 

and the implied median duration of like prices is 6.0 months (vs. 7.2 months for regular 

prices).4  Evidently a sale price is more likely to differ from the previous sale price than a 

regular price is to differ from the previous regular price.  And many changes in sale price are 

not interrupted by regular prices (think repeated markdowns for clearance items.  Our 

evidence says sales are not at a fixed price or discount from the regular price; they have a life 

of their own. 

We summarize by characterizing the median duration of prices as ranging from 4 to 7 

months, depending on the treatment of sales (included, excluded, or like).5  The mean 

durations are higher at 7 to 8.5 months or so.  Which statistic is more meaningful depends on 

the model.  According to Carvalho (2006), stronger strategic complementarities make the 

mean and higher moments more relevant, and the median less so. 

For the median duration, our upper bound of 7 months is outside the 8-11 month range 

reported in NS for regular prices.  Table 2 attempts to shed light on this discrepancy.  The 

bottom line is that NS exclude many prices that we incorporate.  The first column of Table 2 

presents medians to facilitate comparison.  The first row contains our 3.7 month duration for 

posted prices.  The next row shows what happens if, every time a middle price is lower than 

its identical neighbors (a V shape), the middle price is replaced with its neighbors.  We do this 

regardless of the “sale” or “regular” labels.  Filling in V shapes raises the median duration 

                                                           
4 We do not report statistics on sale prices alone because most categories have no sales at all in the BLS data. 
 
5 If we stop the “duration clock” when prices are not available, the range is 3-6 months rather than 4-7 months. 
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from 3.7 months to 5.3 months.  Thus purely temporary price discounts do not explain our 

low durations compared to the pre-BK literature.  The next row of Table 2 repeats the median 

duration of 6.0 months for like prices.  Like prices allow for the possibility that sale prices are 

sticky even if they do not end with a return to the previous regular price.  The subsequent row 

repeats our regular price duration of 7.2 months.  These initial rows drive home the point that 

our 7-month upper bound involves aggressive filtering of all sales. 

The Table 2 row labeled “No Substitutions” compares only regular prices in between 

item substitutions.  The median duration climbs to 8.7 months without substitution-related 

price changes.  About 80% of the time the substituted item’s price differs from the previous 

item’s price.  To us these are new prices pure and simple.6  BK included them and stressed 

their importance to overall price flexibility.  Now, it is possible the new prices on new items 

do not incorporate macro information.  But excluding them convolutes sticky nominal prices 

and sticky information.  Moreover, Klenow and Willis (2007) find that substitution-related 

price changes are very much related to inflation. 

NS exclude substitution-related price changes in their 8-11 month range.  This leads 

them to report, for example, that regular prices change every 27 months in apparel, where the 

average item lasts only about 10 months.  Excluding substitutions is tantamount to assuming 

that the frequency of price changes is the same at the point of model turnover as within the 

product cycle, despite the fact that a new price is arrived at 80% of the time.  NS note that 

substitutions are often seasonal, and therefore arguably time-dependent rather than state-

                                                           
6 We may be missing some price changes tied to product turnover.   Bils (2005) argues the BLS overstates 
quality-adjusted price increases at substitutions.  A subset of the 20% of substitutions showing no price change 
may therefore involve true price decreases.  Also, we ignore the 0.5% frequency of item exit without 
replacement.  Exiting items probably give way to new items at new prices (e.g., Broda and Weinstein 2007). 
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dependent.  Golosov and Lucas (2007) and many others have argued that state-dependent 

pricing involves greater price flexibility.  But this does not seem to be grounds for excluding 

substitutions any more than excluding all time-dependent price changes.7 8 

The next row in Table 2 reports a median duration of 9.3 months for “adjacent prices.”  

This statistic compares only consecutive monthly regular prices in between substitutions.  

Their slightly higher duration says price changes are more frequent after items return to stock, 

come back into season, and return from sales.  NS exclude non-adjacent price comparisons in 

the high end of their 8-11 month range.  We see no justification for ignoring this data given 

that it matters. 

The final row of Table 2 presents a median duration of 10.6 months when the sample 

is confined to 1998-2004 (and to adjacent regular prices in between substitutions).  At the 

high end of their 8-11 month range, NS drop the first 10 years of the CPI-RDB.  We think it is 

most informative to include all of the years in the CPI-RDB. 

To recap, the median duration rises from 7.2 months for 1988-2004 regular prices to 

10.6 months for 1998-2004 adjacent regular prices in between substitutions.  The mean 

duration goes from 8.6 months to 13.4 months.  One can obtain median durations above 4-7 

months only by excluding many price changes beyond all sale-related price changes.  

 

                                                           
7 For seasonal apparel, one might imagine a saw-toothed pattern, with the price being the same in each January, 
each February, etc.  For the 25 seasonal apparel ELIs, however, prices 12 months apart differ 76% of the time.  
This implies a monthly hazard of 12% and a duration of 8 months.  Comparing only regular prices within 
product cycle, NS report a duration of 28 months for season apparel items. 
 
8 Regular product turnover may affect the frequency of price changes before and afterward.  Analogously, see 
Hobijn, Ravetta and Tambalotti (2006) for analysis of inflation around the euro changeover. 
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Price changes are large in average absolute value … 

How large are price changes?  We again start by calculating means within categories 

(ELIs) for 1988-1997 and 1998-2004 separately.  Let  

 

 
itit it itdp p p γ−≡ −  

be the difference in the log price from the previous observation itγ  months ago.  Recall from 

Figure 1 that these itdp ’s (and itγ  gaps) are defined differently for posted vs. regular prices. 

Within each ELI-year, we weight price changes (observations with 1itI = and 

therefore 0itdp ≠ ) in proportion to the price weights in the CPI-RDB.  These l itω  weights 

differ from the itω  weights used for frequency estimation, as the l itω  are nonzero only for 

price changes (they are 0 when 0itI = ).  The l itω  weights add up to 1 in each year, thus 

weighting years equally.  The ELI mean for a given sample of years is then 

(3.2) 

l

l

| |
| |

it it
i s t

s
it

i s t

dp
dp

ω

ω
∈

∈

≡
∑∑

∑∑
. 

In the numerator the inside summation is across price changes within a quote-line and the 

outside summation is across quote-lines (i’s) in an ELI.  The denominator is the sum of the 

weights for all price changes.  We calculate weighted means and medians across ELIs for 

1988-1997 and 1998-2004, then take a weighted average of them (with weights 10/17 and 

7/17) to arrive at statistics for 1988-2004. 

Table 3 shows that absolute changes in posted prices average 14% with a median of 

11.5%.  Regular price changes (both the current and previous price is a regular price) are 
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smaller but still large, with a mean of 11% and median of 10%.  Sale-related price changes 

(either the current or previous price is a sale price) are very large, with a mean of 25% and 

median of 23%.  “Like” price changes are a weighted average of the regular and sale-related 

price changes, and they average 12% with a median of 11%.  We summarize Table 3 as 

saying that absolute price changes are large, averaging around 10%.9 

As prices change every 4 months or so and inflation averages around 0.2% per month 

in our sample, the average price change is about 0.8%.  The combination of small average 

price changes and large average absolute price changes suggests substantial idiosyncratic 

shocks to marginal cost and/or desired markups.  Golosov and Lucas (2007) use this evidence 

to motivate a SDP model with idiosyncratic productivity shocks.10   Midrigan (2006) and 

Dotsey, King and Wolman (2006) do so as well.  Klenow and Willis (2006) argue that these 

big price changes undermine the case for strategic complementarities that make it costly for 

firms to change their relative prices. 

Burstein and Hellwig (2006) consider idiosyncratic demand shocks alongside 

productivity shocks.  They use scanner data from Dominick’s grocery stores, and report 

smaller price increases than price decreases.  In the CPI-RDB, price increases are 2 to 3 % 

points smaller than price decreases.  For regular prices, increases average 10.6% whereas 

decreases average 13.3%.  For sale-related price changes the difference is only a % point.  

 
... yet many price changes are small 

Figure 2 provides a histogram of regular price changes.  On the horizontal axis are 

                                                           
9 Absolute price changes are 1 to 2 % points smaller if we exclude the large changes at substitutions.  Note that, 
throughout the paper, we refer to log-changes as “percent” changes. 
 
10 In Appendix A we describe five moments we calculated from the CPI-RDB expressly for Golosov and Lucas. 
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bins of price changes; on the vertical axis is the % of the 1988-2004 weight represented by the 

price changes in each bin.  The weights on each individual price change are the l itω  weights 

used in (3.2).  The histogram shows that both large and small price changes are common, as 

are both price increases and price decreases.  The corresponding histogram for posted prices is 

similar, though with thicker tails. 

Table 4 provides greater detail on small price changes.  Around 44% of regular price 

changes are smaller than 5% in absolute value, 25% are smaller than 2.5%, and 12% are 

smaller than 1%.  Midrigan (2006) finds many small price changes in the Dominick’s data as  

well.  He points out that such small price changes are hard to reconcile with the large menu 

costs needed to rationalize the large average price changes.  The Golosov and Lucas model, 

for example, does not generate many small price changes.  Midrigan introduces economies of 

scope in changing prices (across items for a given manufacturer or a given aisle for a retailer) 

to explain the coexistence of many small price changes alongside large average changes. 

The existence of many large and small price changes might also be rationalized by a 

wide range of menu costs across items and/or time, as in the DKW model.  i.e., the small 

(large) price changes may reflect small (big) menu costs.  We will visit this possibility in our 

model section below.  For now, Figure 3 plots the distribution of standardized price changes: 

(3.3) it dp
it

dp

s

s

dp
z

μ
σ

−
≡ .  

This z-statistic is the deviation of a price change from the weighted average price change in 

the same ELI s (
Sdpμ ), divided by the weighted standard deviation of price changes in s 

(
Sdpσ ).  Figure 3 shows that price changes are often small compared to their average size 

within the same ELI. 
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Price durations are variable, even for a given item 

What is the distribution of price spells?  We could infer this from our frequency 

estimates, perhaps taking into account heterogeneity across categories or quote-lines.  But 

rather than impose constant flat hazards we now present direct evidence on spell lengths.   

Several issues arise: gaps in quote-lines, censoring at the ends of quote-lines, and weighting 

of spells.  For our frequency estimates we allowed for the possibility that prices changed in 

between observations, but that leaves the spell length indeterminate.  Thus we go to the 

“sticky” extreme here and carry forward the last observed price to fill in gaps.  If a price has 

changed we treat it as having done so at the end of any gap.  We did this for stockouts, out-of-

season items, and even sale prices. 

We dropped the censored spells at the beginnings and ends of quote-lines because we 

cannot determine their length.  We could try to adjust for this censoring, but are worried that 

doing so would make the distribution of spells look artificially uniform.  Also, it would entail 

making assumptions about hazard profiles.  By focusing on completed spells, this distribution 

could be biased toward short spells.  But there are biases in each direction: long spells are 

more likely to be censored, but short spells are less likely to be in the sample to begin with.11  

Also, our filling in of gaps should bias the durations upward. 

We are careful to weight each spell equally within quote-lines, but not across quote-

lines.  We take the observation weights itω  (which sum to 1 across all prices in each month) 

and divided them by 205, the number of months.  The resulting weights sum to 1 across all 

items and months.  We sum these / 205itω  weights across time for a given quote-line.  We 

then divide this cumulative quote-line weight equally across each of the quote-line’s 

                                                           
11 Gabriel and Reiff (2007) discuss the effect of censoring on the estimated distribution of price spells. 
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completed price spells to arrive at spell weights itϖ  (which are non-zero only if 1itI = ).  If a 

quote-line has a constant flat hazard, these spell weights correctly yield an average duration 

equal to the inverse of that hazard.  This method does not weight quote-lines with frequent 

price changes more than quote-lines with rare price changes.  If a quote-line has only a few 

price changes, all of its cumulative weight will be spread among these few price changes.  Put 

differently, the weight on each price change will be small for items with many price changes 

and large for items with few price changes.  This keeps our durations from tilting toward 

items with frequent, short price spells. 

Figure 4 presents the (weighted) distribution of times between regular price changes.  

Almost half of all weighted spells (47%) are within one quarter.  As shown in the right 

portion of the figure, almost one-fifth of spells (17%) last a year or longer.  Only 5% of price 

spells last precisely a year; it will be useful to keep this modest figure in mind when we plot 

hazard rates below.  Spells are shorter for posted prices (which include sale prices), with 57% 

lasting a quarter or less and 13% lasting more than a year.  For both regular and posted prices, 

these median “direct” durations are considerably shorter than those implied by our frequency 

estimates in Table 1.  Thus the direct durations may be biased downward due to censoring of 

longer spells.  We only wish to use Figure 4 to establish that durations are highly variable, 

however, a point that can be made even with a censored sample. 

Figure 4 makes it clear that there is no dominant spell length.  But perhaps different 

durations predominate for different categories or items, and the pooled figure conceals this 

pattern.  We take the spells and weights underlying Figure 4, subtract the weighted mean 

duration within ELIs (or quote-lines), sum the weighted squared deviations, and take the 

square root to arrive at a weighted standard deviation of spells.  Table 5 shows that spells vary 
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considerably even within ELIs and quote-lines.  Within ELIs, the standard deviation is 6.2 

months for posted prices (compared to the mean duration of 6.8 months) and 7.0 months for 

regular prices (compared to the mean of 8.6 months).  Even within quote-lines, the standard 

deviation is 4.3 months for posted prices and 5.2 for regular prices. 

 
Hazard rates are flat (for a given item) 

Rather than assume a flat profile of price change hazards, we now estimate hazard 

rates for each age of prices.  We calculate the weighted average frequency of price changes 

conditional on reaching each age.  We use the observation weights itω  (which sum to 1 across 

all prices in each month) and divide them by 203, the number of months for which we have 

prices with determinate ages.12  The resulting weights i itω  sum to 1 across items and months.  

With this pooled sample, we calculate the weighted average of the price change indicator for 

each age of prices τ  using the indicator { }itI τ τ= , which is 1 when itτ τ= and 0 otherwise: 

 { }
j { }
j { }|
it it it

i t
it it

it it
i t
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≡
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Figure 5 provides the monthly hazard rates at each age for regular prices.  This pooled 

hazard is sharply declining in the first several months.  In fact, it is monotonically declining 

except for blips every 6 months.  The increase at 1 year is more of a spike, with the hazard 

rate doubling to around 22%.  Recall from Figure 4, however, that only about 5% of spells 

last precisely 12 months.  So this locally important spike is not so important globally.  The 

hazard profile for posted prices has a similar shape, but is at a higher level. 

                                                           
12 We do not know the age of prices in the first, censored spell of each quote-line, so we do not use these prices 
in estimating hazard rates.  For items that changed price in February 1988, the prices in March 1988 do go into 
our hazard rates.  Hence 203 months (March 1988 through January 2005) are represented. 
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The declining pooled hazards could simply reflect a mix of heterogeneous flat hazards, 

i.e., survivor bias.  Consistent with this interpretation, the hazards flatten out considerably 

when we split quote-lines into those above vs. below the median frequency, and look 

increasingly flat when we split further into quartiles, deciles, etc.  We illustrate this by 

allowing for 10 different fixed effects in the pooled hazards.  We calculate the unconditional 

hazard rate for each quote-line Ii
μ , sort the quote-lines into deciles based on Ii

μ , and then 

calculate the unconditional hazard rate for each decile Idμ , d = 1, …,10.  Finally, we calculate 

the weighted mean hazard at each age relative to the decile fixed effect: 

 { }
j { }

j { }
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/ |
it it itId

i t
it itId

it it
i t
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ω μ τ τ
μ τ τ
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Figure 6 provides the hazard rates (relative to fixed effects) for regular prices I  each 

of the first 12 months, where the vast majority of the duration mass lies.  After a modest drop 

from month 1 to 2 (the equivalent of going from 24% to 21% in frequency), hazard rates are 

essentially flat until spiking at 12 months.  Allowing for additional fixed effects does not alter 

the picture much, and the pattern is similar for posted prices.  Taking into account survivor 

bias, therefore, virtually eliminates the downward slope to the hazard profile.  This empirical 

finding stands in contrast to that of Nakamura and Steinsson (2007), who emphasize 

downward-sloping hazards in the CPI-RDB. 

 
The size of price changes is unrelated to the time since the previous change (for a given item) 

We now explore how the absolute size of price changes relates to the duration of a 

completed spell.  As with Figure 4 and Table 5 on variable durations, we use spell weights itϖ  
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that divide a quote-line’s cumulative weight equally among all of its completed spells.  

Pooling all items, the weighted average size of price changes for each age of prices τ is 

 { }
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Figure 7 plots average size vs. age for regular prices.  Price changes start out small 

(~9% for 1-month spells) and grow larger (~14% for 10-month spells).  For posted prices the 

picture is much flatter, with price changes hovering around 14% for 9 of the first 10 months. 

The rising size vs. age pattern for regular prices could reflect heterogeneity in size that 

is correlated with the heterogeneity in hazards.  We check for this by allowing for 10 different 

fixed effects.  We calculate the unconditional size of price changes for each quote-line | |dp iμ , 

sort the quote-lines into deciles based on | |dp iμ , and then calculate the unconditional size of 

price changes for each decile | |dp dμ , d = 1, …, 10.  We then calculate the weighted mean size 

of price changes relative to the decile fixed effect at each age: 
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Figure 8 confirms that heterogeneity contributed to the rising size vs. age in Figure 7.  

For regular prices, size edges up modestly (the equivalent of about 1 % point), compared to 

increasing 5 % points without decile fixed effects.  Evidently quote-lines with more frequent 

price changes have smaller absolute price changes.  Similarly, there is little relation between 

size and age for posted prices.  The picture changes little when we add more fixed effects. 
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The intensive margin dominates the variance of inflation 

Inflation is the product of the fraction of items with price changes (the extensive 

margin “EM”) and the average size of those price changes (the intensive margin “IM”): 

(3.4) 
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As shown, tfr  is the “fraction” (more accurately, the CPI weight) of items changing price in 

month t , and tdp  is the weighted-average magnitude of price changes occurring in month t .  

Table 6 contains summary statistics for regular prices in the Top 3 CPI areas from 

February 1988 through January 2005.  The monthly inflation averages 0.27%, or 3.3% 

annualized.13  The fraction of items changing price averages 27% a month, with a 3% 

standard deviation.  The coefficient of variation is much higher for the average size of price 

changes, which has a standard deviation of 1.2% and a mean of 1%. 

Figure 9 displays 12-month moving averages for tπ , tfr  and tdp .  EM ( tfr  ) is 

relatively stable and not so obviously correlated with inflation (correlation 0.25 in Table 6).  

IM ( tdp ) is more volatile and comoves almost perfectly with inflation (correlation 0.99). 

How important are EM and IM, respectively, for the variance of inflation?  We 

decompose the variance of inflation over time into (terms involving) the variance of the 

average price change, the variance of the fraction changing price, and their covariance.  We 

                                                           
13 Our regular price inflation rate is higher than the 3.0% headline CPI inflation rate because it excludes 
clearance prices.  For posted prices, our annual inflation rate is 2.5%, which is lower than 3.0% because of our 
use of geometric weighting in (3.4) and our exclusion of shelter.  The BLS began using geometric weights in 
1999 and only within categories.  Also, our series is more volatile because it is only for the Top 3 areas. 
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find it useful to take the variance of a first-order Taylor series expansion of t tt fr dpπ ⋅�  

around the sample means fr  and dp  to arrive at this exact variance decomposition: 

(3.5) 
2 2var( ) var( ) var( ) 2 cov( , )t t t t t tdp fr fr dp fr dp fr dp O

IM term EM terms
π = ⋅ + ⋅ + ⋅ ⋅ ⋅ +���	��
 ���������	��������
 . 

The higher order terms ( tO ) and the covariance term are small both in the data and in the SDP 

models we simulate.  The quantitatively important terms are the variance terms. 

Table 7 reports variance decompositions based on posted prices and regular prices.  

The IM term accounts for all of inflation’s variance in staggered TDP models, and anywhere 

from a little to most of it in SDP models.14  The EM terms involve changes in the extensive 

margin, which only contribute in SDP models.  The results in Table 7 are clear.  The intensive 

margin accounts for 94% of inflation’s variance for posted prices and 91% for regular prices.  

We repeated the variance decomposition for a variety of samples: excluding item 

substitutions, excluding food and energy items, and including urban areas with bi-monthly 

price quotes.  Across the samples, the IM term accounted for between 86% and 113% of the 

variance of inflation.  The fraction of items changing price ― a key endogenous variable in 

some SDP models ― are a relatively unimportant source of fluctuations in inflation.15 16 

What is behind high volatility of the average size of price changes ( tdp ) and its strong 

comovement with inflation?  It is useful to further decompose inflation and its components 

                                                           
14 From (3.5), one might think small average price changes would guarantees a small extensive margin.  But this 
was decidedly not the case when we simulated the DKW (Dotsey, King and Wolman) SDP model in Klenow and 
Kryvtsov (2005).  Even when matching the empirical average price change (dp) and monthly inflation rate, the 
EM accounted for 70% of the variance of inflation in the DKW model.  
 
15 Cecchetti (1985) points out that, if price changes are perfectly staggered, then one can estimate the frequency 
of price changes from across-good variation of inflation relative to mean inflation.  He successfully applies this 
to magazine prices, meaning their changes are indeed largely staggered – a precursor to our finding.  In Cecchetti 
(1987), he applies the same methodology to estimate the frequency of wage changes. 
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into terms due to price increases and decreases.  Let itI +  be a price-increase indicator which is 

1 if 
itit itp p γ−>  and 0 otherwise.  Similarly, let itI −  be a price-decrease indicator which is 1 if 

itit itp p γ−< and 0 otherwise.  The weighted fraction of items changing price  ( tfr  ) is the sum 

of the weighted fractions of items with rising ( tfr+ ) and falling ( tfr− ) prices: 
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Related objects are the average sizes of price increases and decreases: 

(3.7) 
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Using (3.6) and (3.7) inflation is the sum of terms involving price increases and decreases: 

 

(3.8) 
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Table 6 reports that price decreases are less frequent (at 11.5%) than increases 

(15%).17  The size of price increases and decreases are modestly correlated with inflation (0.2 

and –0.2, respectively); the corresponding fractions correlate more strongly with inflation (0.7 

and –0.4, respectively).  We also regress these components on inflation.  Table 6 shows that a 

1 % point increase in inflation is associated with a 5.5 (–3.1) % point change in the fraction of 

price increases (decreases), and a 0.6 (–1) % point change in the size of price increases 

                                                                                                                                                                                     
16 Gagnon (2007) finds a larger role for the extensive margin in Mexican’s more volatile 1994-2004 inflation. 
17 Thus 57% of price changes are price increases.  Nakamura and Steinsson (2007) report that 67% are increases.  
The difference is that we are reporting the mean fraction, whereas they are highlighting the median fraction. 
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(decreases).  These coefficients are all statistically significant, but tfr+  and tfr−  are more 

closely tied to inflation than are tdp+  or tdp−  (both statistically and relative to their means).18 

Nakamura and Steinsson (2007) also relate the frequency and size of price increases 

and decreases to inflation.  Like us, they find the fraction of price increases correlates most 

with inflation.  Unlike us, they find no significant relation between inflation and the incidence 

of price decreases or either size variable.  In their interpretation price increases ( tpos ), not 

price decreases ( tneg ), drive inflation movements. 

Figure 10 plots 12-month moving averages of our tπ , tpos , and tneg .  The tpos  term 

correlates modestly more with inflation (0.7) than does the tneg  term (–0.6).  When we 

regress the terms on inflation, the coefficients are 0.59 and –0.41 (see Table 6).  These 

coefficients mirror a particular variance decomposition: 

(3.9) var( ) var( ) cov( , ) var( ) cov( , )t t t t t t tpos pos neg neg pos neg
POS term NEG term

π = − + −������	�����
 ������	�����
 . 

Here the covariance term is split evenly between the POS and NEG terms.19  Table 7 shows 

that the POS term indeed accounts for 59% of inflation’s variance, and the NEG term 41%.  If 

we include month dummies (to control for seasonality) the inflation decomposition becomes 

50% POS, 50% NEG.  Hence our series suggest a very important role for both price increases 

and price decreases in inflation movements. 

We know of two reasons our “POS, NEG” results differ from those of NS.  First, in 

their figures they plot cross-category median fractions and sizes against inflation, whereas our 

                                                           
18 All regression results in this subsection are robust to including seasonal dummies, including a time trend, or 
using the official CPI rather than our Top 3 area inflation rate. 
 
19 The covariance is only -0.055 relative to inflation’s variance, so this matters little. 
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statistics are for cross-category means.  We think means are at least as useful as medians 

because of identities tying the means to actual inflation.  Second, their regression results, 

although for means, are for 12-month moving averages and for 1988-1997 and 1998-2005 

separately.  Thus they have only ten independent observations on inflation in one subsample, 

and eight in another.  Our results in Table 6 and 7 are for the 204 months across the entire 

1988-2004 sample.  When we aggregate up to 68 quarters, the roughly equal importance and 

significance of POS and NEG remains very much intact.  It is only when we aggregate up to 

annual data and split the sample that the components start plummeting in significance.  

Compared to monthly data for the whole sample, our standard errors are four to ten times 

higher with annual data and a split sample. 

 

4.  Sticky Price Models vs. Facts 

In this section we simulate a number of sticky-price models to compare their 

predictions to the facts presented in the previous section.  In particular, we study the patterns  

of price adjustment in partial equilibrium versions of the Golosov and Lucas (2007), Dotsey, 

King and Wolman (1999), Calvo (1983), and Taylor (1982) models.  For each model we 

simulate firm pricing decisions in 67 sectors calibrated to evidence for 67 BLS Expenditure 

Classes.20  We then calculate the model statistics corresponding to the facts documented in 

Section 3.  Readers familiar with these models will want to skip to the scorecard in Table 8.  

The bottom line will be that none of these models matches all of the stylized facts we laid out. 

                                                           
20 BLS Expenditure Classes are a higher level of aggregation than Strata (~200) or ELI’s (~300).  The parameter 
values for these simulations are available in an Appendix on our websites. 
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The Golosov and Lucas (GL) model 

A monopolistically competitive firm in a sector is endowed with a constant returns to 

scale technology that converts l  units of labor input into z l  units of output.21  Here z  

represents a firm's productivity level.  We assume ( )zln  follows an AR(1) process:  

ln(z') ln(z)z zρ ε= +  

where zε  is a mean zero, normally distributed error with standard deviation zσ .  Let 'p  (and 

p ) denote the price of the good sold in the current (and previous) period relative to the 

geometric average price within a sector in that period.  Demand for the firm's output in the 

current period is θ−'p , where the elasticity of goods demand,θ , is a constant, and the 

aggregate output is fixed at 1. 

Let ϕ  denote a fixed cost of implementing a price change (“menu cost”) expressed in 

units of labor.  The firm begins the current period with relative price p , inherited from the 

previous period.  After realizing its current productivity level z , the firm chooses whether to 

adjust its price.  If it changes its price, the firm pays the fixed labor cost at wage w , ϕw , and 

chooses the new relative price 'p .  Otherwise, the firm keeps its previous price, so that the 

new relative price is decreased by the rate of inflation π .  Formally, the problem of the firm 

can be written as follows: 

(4.1) [ ]-
A p'

V (p,z) = max  p' p' w/z + V(p',z')Q(z,dz')θ β− ∫  

(4.2)   ( ) ∫ )dz')Q(z,z',V(p/+w/z]-[p/p/ =z)(p,V -
N πβππ θ  

 

[ ]z)(p,V  ,w-z)(p,Vmax =z)V(p, NA ϕ  

                                                           
21 Here and throughout sector indices are implicit. 
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where z)V(p,  is the value before the adjustment decision, z)(p,VA  is the value of adjusting 

one’s price, and z)(p,VN  is the value of not adjusting one’s price; )Q(z,⋅  denotes the c.d.f. of 

future shocks z'  conditional on the current realization z .  Appendix B describes the 

numerical solution method we apply to the firm’s problem.  

 
The Dotsey, King and Wolman (DKW) model 

In the original Dotsey, King and Wolman (1999) model the fixed cost,ϕ , is not 

constant but rather i.i.d. across firms and over time, drawn from a differentiable c.d.f. ( )ϕG , 

where max0 ϕϕ ≤≤ .  The firm's problem is now written as 

( )ϕϕβθ dG∫ )dz')Q(z,,z',V(p'+[p'-w/z]p'  max=z)(p,V -

p'A  

( ) ( )ϕϕπβππ θ dG∫ )dz')Q(z,,z',V(p/+w/z]-[p/p/ =z)(p,V -
N  

[ ]z)(p,V  ,w-z)(p,Vmax =)z,V(p, NA ϕϕ  

The i.i.d. assumption on menu costs implies that values after the adjustment decision, 

z)(p,VA and z)(p,VN , do not depend on the realization of the current fixed cost.  The original 

DKW model does not have idiosyncratic shocks to the firm’s productivity, so all adjusting 

firms in a given period choose the same price.  

 
The Calvo model 

As with the GL model, we allow idiosyncratic productivity shocks here.  With this 

modification, a Calvo firm can be approximated by a DKW firm with a fixed cost c.d.f. 

putting all weight on 0=ϕ  and maxϕϕ = .  When the realized fixed cost is maxϕϕ =  and maxϕ  
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is large, the firm will (almost) never change its price.  Conversely, a firm will (almost) always 

adjust its price when the menu cost is zero.  Such exogenous, time-dependent pricing 

contrasts with the state-dependent pricing in the GL and DKW models, in which a firm’s 

decision to change its price depends on the state ( )zp, . 

 
The Taylor model 

Under Taylor price setting a firm is allowed to adjust its price every nth period.  As in 

the Calvo model, the price adjustment decision does not depend on the state.   

 
To facilitate the comparison of the sticky price models to the BLS data, we simulate 

prices set by an optimizing firm for 204 consecutive months.  The number of firms simulated 

corresponds to the number of price quotes in the corresponding BLS expenditure category 

divided by 204.  Several parameters in the firm’s problem are calibrated to moments in the 

regular price data for the corresponding BLS category:  the inflation rate in the sector, π , 

equals the average inflation rate in the BLS category; the menu cost, ϕ , and two parameters 

of the firm’s productivity process, zρ  and zσ , are chosen to fit the frequency of price 

changes plus the standard deviation and serial correlation of a firm’s relative price 

(conditional on price change) for the expenditure category.22  The remaining parameters are 

common across simulated sectors.  The monthly discount factor β  = 0.971/12, corresponding 

to a 3% annual real interest rate.  The goods demand elasticity θ  = 10, implying a desired 

markup of 11%.  The wage w  does not affect price dynamics. 

We confront the alternative models with the following stylized facts in the BLS data:  

(a) price changes are frequent; (b) price changes are typically large; (c) many price changes 
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are small; (d) price spells vary in length; (e) hazard rates are essentially flat; (f) the size of 

price changes does not increase with duration; and (g) the intensive margin dominates the 

variance of inflation; the extensive margin contributes little due to offsetting movements in 

the fraction of price increases vs. decreases. 

All of the models can generate the first fact (price changes are frequent) by setting the 

menu cost low enough.  The last fact (the intensive margin drives inflation) cannot be 

reproduced by models in this section as they abstract from aggregate inflation fluctuations.  

We cite the results from general equilibrium simulations in Golosov and Lucas (2007) and 

Klenow and Kryvtsov (2005) to assess models’ success in matching the importance of the 

intensive margin for the variance of inflation. 

 
Golosov and Lucas vs. the facts 

The GL model can generate large price changes, and indeed was calibrated to do so 

using moments we provided from the CPI-RDB.  In our simulations of this model the average 

absolute price change is 14.6%, in the neighborhood of the value for posted prices.  Midrigan 

(2006) stresses, however, that the GL model fails to generate enough small price changes.  

The fraction of price changes between -5% and +5% is around 9% in our simulations, vs. 40-

44% in the BLS data.  This model fails to generate enough small price changes because it has 

a single, large cost of price adjustment.  A model with a range of menu costs, including many 

small ones as in Calvo or DKW, stands a better chance.  Rather than the stochastic menu costs 

of those models, we entertain menu costs specific to each of our 67 sectors.  Figure 11 plots 

the distribution of “standardized” price changes as in (3.3).  There remains a “missing 

                                                                                                                                                                                     
22 For the DKW model we assume a uniform c.d.f. of menu costs and calibrate maxϕ .  For the Calvo model we 
set the probability of the menu cost being zero to the frequency of price changes in the BLS category. 
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middle” of small price changes in the model vs. the data.  This is true even if we entertain a 

much lower elasticity of substitution (θ = 2), as will be helpful for matching some of the facts.  

We stopped at calibrating 67 sectors to the data, but it is possible that a GL model with more 

heterogeneity could fit this fact.  As mentioned, Midrigan (2006) proposes a different fix, 

namely economies of scope in changing prices. 

Due to the endogenous timing of price adjustment and random shocks to the firm’s 

productivity, the GL model succeeds in predicting variable spell durations.  The standard 

deviation of durations in our simulations is 10.4 months, which is actually larger than the 7.0 

months or so within ELIs (see Table 5).  A model with more sectors would presumably come 

closer to the data.  Still, Figure 12 shows that the model matches the empirical distribution of 

spell durations fairly well with θ = 10. 

Figure 13 compares hazard rate deviations for the GL model to those in the Top 3 CPI 

areas.  The fixed effects in the GL model are at the sector level, whereas in the data they are 

in deciles of quote-lines.  With θ = 10 the GL model predicts declining hazards, in contrast to 

the roughly flat hazards in the data.  The probability of a price change is about 10 % points 

higher at 1 month than at 1 year.  The declining hazards may come as a surprise, as one 

expects hazards to rise as persistent productivity shocks accumulate.  The reason they are 

downward-sloping is because the width of the inaction region, or “sS band”, is not fixed.  

When a firm’s idiosyncratic productivity is persistently high it chooses a low price and sells a 

high quantity. A high level of profits is at stake in getting the price right, so the sS band is 

narrow.  At low productivity levels less is at stake so the sS band is wider.23  This lends a 

form of survivor bias to the hazard profile: young prices are more common when the sS band 

                                                           
23 See Figure 1 in Golosov and Lucas (2007). 
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is narrower and the hazard rate is higher; old prices are more common when the sS band is 

wider and the hazard rate is lower.  Consistent with this explanation, the model hazards slope 

upward when we lower the elasticity to θ = 2 in Figure 13.24  At a lower elasticity the scale 

effect of higher productivity on profits is much weaker.  Our model has a deterministic 

inflation trend, but no aggregate shocks.  Such shocks might be more persistent than 

idiosyncratic shocks, lending additional upward-slope to the hazard.  This effect would 

probably be modest, as idiosyncratic forces drive most price changes. 

Figure 14 compares models and data on the size of price changes (relative to fixed 

effects) against the age of the price.  The GL model with θ = 10 predicts bigger absolute price 

changes for older prices.  Price changes are about 5 % points larger after 1 year than after 1 

month.  The explanation for this property is again the varying width of the sS bands.  Young 

prices are disproportionately from the narrow portion of the band, where price changes are 

small; old prices are disproportionately from the wide portion of the band, where price 

changes are big.  When θ = 2 the scale effect on the width of sS bands is much weaker.  The 

size vs. age profile becomes as flat as a pancake in Figure 14 when θ = 2.25 

Finally, Golosov and Lucas (2007) report that their general equilibrium rightly implies 

that the intensive margin drives inflation movements.  The intensive margin term in their 

variance decomposition accounts for around 85% of inflation’s variance.  Their overall 

fraction of price changes is stable because prices are changed mostly in response to large 

idiosyncratic shocks rather than the smaller aggregate shocks.  In their model, just as in our 

data, the fraction of price increases is positively correlated with inflation and the fraction of 

                                                           
24 Also consistent with our interpretation, we find a strong negative relationship in the model between a firm’s 
relative price and the probability of its price changing when θ = 10, and a much weaker relationship when θ = 2. 
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price decreases is negatively correlated with inflation.  Aggregate shocks affect inflation 

predominantly through this “selection effect.” 

The first column of Table 8 summarizes the ability of the GL model to fit the facts 

from the CPI-RDB.  With θ = 2, the model succeeds in matching all of the facts except for the 

sizable fraction of small price changes in the data.26 

 
DKW vs. the facts 

In Klenow and Kryvtsov (2005) we simulate the original general equilibrium version 

of the DKW (1999) model.  Due to its range of menu costs, the model can produce a lot of 

small price changes and a wide span of spell durations.  The variance of inflation is dominated 

by the extensive margin in the DKW calibration, however, in stark contrast to the evidence.  

Also, since the original DKW model does not have idiosyncratic shocks, it is incapable of 

generating large average absolute price changes.  Furthermore, without idiosyncratic shocks, 

the gap between the firm’s actual and desired prices is increasing in the age of the actual 

price.  This makes for increasing hazard rates and rising absolute size of price changes, 

contradicting two of our facts.  

 
Calvo vs. the facts 

Our Calvo model with large idiosyncratic shocks to a firm’s price has large average 

absolute price changes.  At the same time, its variable menu costs (sometimes zero, 

sometimes prohibitive) generate a lot of variation in the size of price changes.  The mean and 

standard deviation of the absolute size of price changes are 12.8% and 10.8%, respectively.  

                                                                                                                                                                                     
25 We find a strong positive relationship in the model between a firm’s relative price and the size of its price 
changes when θ = 10, and a much weaker relationship when θ = 2. 
26 Instead of a low demand elasticity, one could neutralize the scale effect by making the menu cost proportional 
to (say) sales rather than being fixed in terms of labor.  See, for example, Gertler and Leahy (2006). 
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The former statistic is lower and the latter is higher than in the GL model, because many price 

changes are small in the Calvo model.  The pooled distribution of price changes is close to the 

bell-shaped empirical distribution.  Small price changes occur whenever the previous relative 

price is near the desired price and the realized menu cost is zero.  Thus, the Calvo model fits 

the size distribution of price changes much better than the GL model.  Still, Figure 11 shows 

the Calvo model does not have as many small standardized price changes as seen in the data. 

Random productivity and menu costs imply variable price spell durations.  The 

standard deviation of durations between price adjustments is 8.7 months, compared to 7.0 

months within ELIs.  Figure 12 illustrates how the model stacks up against the empirical 

distribution of spell durations.  The model falls short by 5 % points for 1-month durations, 

and predicts around 7 % points too many spells exceeding 1 year. 

Calvo hazard rates for individual sectors are flat by construction.  Figure 13 shows this 

to be an empirical victory.  Related, the intensive margin term in the variance decomposition 

is 100% by definition.  This is compared to the 90% or more seen in the data.  The frequency 

of price increases vs. decreases, however, does not move much with inflation in the Calvo 

model, in contrast to the data. 

Like the GL model, the Calvo model predicts bigger absolute size of price changes for 

older prices.  Price changes are about 5 % points bigger after 1 year than after 1 month (see 

Figure 14).  Although the pattern is similar to that in the GL model, the explanation is 

different.  As a price ages shocks (and trend inflation) accumulate, moving the actual price 

farther away from the desired price on average.  In the GL model, selection dulls this effect.  

Either way, the rising size with age pattern is inconsistent with the flat profile in the data. 
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The third column of Table 8 reiterates that the Calvo model matches all the facts 

except the flat size vs. age profile and the fraction of price increases vs. decreases moving a 

lot with inflation. 

 
Taylor vs. the facts 

The timing of price adjustment is deterministic in the Taylor model, as opposed to 

random in the Calvo model.  For any sector in the Taylor model, the distribution of price spell 

durations is degenerate, putting all weight on the single duration of price changes in that 

sector.  This is sharply at odds with the data, in which spell durations are variable even at the 

quote-line level (standard deviation of at least 4 months).  Related, the Taylor model predicts 

zero hazard except at a single duration, in stark contrast to the flat empirical hazards.  For 

other facts, the Taylor model does as well as the Calvo model due to the presence of large 

idiosyncratic shocks to the firm’s price (see Table 8).   

We recap this section by describing those features of sticky price models that help 

them succeed in matching the highlighted aspects of the micro data.  Large idiosyncratic 

disturbances help replicate large absolute price changes.  A range of menu costs, arriving 

irregularly, helps generate many small price changes and variable spell durations.  The Calvo 

model generates flat hazard rates.  The GL model with low goods demand elasticity is able to 

produce flat hazards vs. age and flat size vs. age.  Finally, the evidence on the importance of 

the intensive margin for the variance of inflation is reproduced in all models with large 

idiosyncratic shocks to the firm’s price.  But the SDP models do a better job than the TDP 

models of matching the rise and fall of price increases vs. decreases with inflation. 
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5.  Conclusion 

Using the CPI Research Database maintained by the U.S. Bureau of Labor Statistics, 

we documented a number of facts about consumer prices from January 1988 through January 

2005.  In this dataset, price changes are frequent and typically (but far from exclusively) large 

in absolute value.  For a given item, price durations vary, with no correlation between the size 

or probability of price changes and time since the last price change.  The variance of inflation 

stems mostly from the intensive margin (the size of price changes) rather than the extensive 

margin (the fraction of prices changing).  But this dichotomy is due to offsetting movements 

in the fraction of price increases and price decreases, which correlate strongly with inflation. 

We compare these empirical patterns to several prominent time-dependent and state-

dependent pricing models.  The Golosov and Lucas model produces too few small price 

changes.  The Dotsey, King and Wolman model does not generate enough large price 

changes, and gives too much prominence to the extensive margin.  The Taylor model falters 

in predicting a degenerate duration for a given item.  The Calvo and Taylor models wrongly 

predict bigger price changes for older prices. 

In contrast to the empirical shortcomings of 1st generation state-dependent pricing 

models, some 2nd generation SDP models enjoy greater success.  Midrigan (2006) adds 

economies of scope to the Golosov and Lucas model to fill in the “missing middle” of small 

price changes.  Gertler and Leahy (2006) propose a model with Poisson arrival of 

idiosyncratic shocks and small menu costs, so that many price changes are small and the size 

of price changes is unrelated to the time since the last change.  Dotsey, King and Wolman 

(2006) add idiosyncratic shocks to their earlier model, thereby generating large price changes 

and mitigating the importance of the extensive margin. 
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Appendix A: Related statistics provided to Golosov and Lucas 

To calibrate their model, Golosov and Lucas (2007) use five statistics that we 

calculated from the BLS CPI Research Database.  For all five moments, we used the sample 

of regular price changes (as defined in our section 2) in New York City and New York-

Connecticut suburbs from January 1988 through December 1997.  Let ijtp  denote the log 

price of item i  in category j  in month t , 93
jω  the BLS consumption expenditure weight of  j, 

and ijtω  the BLS weight on item i within category  j in month t. 

The geometric mean inflation rate in month t is 

 
93

1( )t j ijt ijt ijt
j i

p pπ ω ω −= −∑ ∑  

and the associated log price index is 
0

t

st
s

p π
=

= ∑ .  The first two statistics are the (across time) 

mean and standard deviation of quarterly inflation, 0.64 and 0.62 percent respectively.  

The fraction of items changing price in month t  is defined as in the text.  The mean 

fraction for New York areas is 0.219 (the third statistic). 

The weighted average price increase is  
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For the New York areas sample, its mean across time is 0.095 (the fourth statistic). 
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Finally, let ijtz  be the log deviation of a price from the price index in the category in 

month t , ijt ijt jtz p p= − .  For each item we calculated the standard deviation of ijtz  across 

months with price increases.  We then took the weighted mean of these standard deviations 

across items and categories:  

 

93 ( ) /j ij ijt ij
j i i

std zω ω ω⎡ ⎤  ⎢ ⎥⎣ ⎦
∑ ∑ ∑ . 

For the New York areas, the average standard deviation of new prices is 0.087 (the 

fifth statistic).  

 
Appendix B: Numerical solution method 
 

To solve the firm's problem, we apply the projection method with Chebyshev 

collocation discussed in Judd (1999).  Specifically, we approximate each of the two value 

functions z)(p,VA , z)(p,VN  by a sum of Chebyshev polynomials: 
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where ( )⋅iT  is the ith-order Chebyshev polynomial; A
ija , N

ija  for ZP M0,...,j ,M0,...,i ==   is a 

set of coefficients.  The ZP MM × -element matrices, Aa  and Na , denote these coefficients. 

We choose values for Aa  and Na  to get the differences between the right- and left-hand sides 

of equations (4.1) and (4.2) to be close to zero at predetermined grid points.  Let jp , for 

PN1,...,j =  denote the values of p  satisfying ( ) 0=pT
PN , where PP MN ≥ .  Similarly, 
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choose jz , with ZN1,...,j = .  Let PA  denote the PP NM ×  matrix with components 

( )jiijP pTA 1, −= , for PP N1,...,j ,M1,...,i == , and ZA  be the ZZ NM ×  matrix with 

components ( )jiijZ zTA 1, −= , for ZZ N1,...,j ,M1,...,i == .  Let ( )aR A , ( )aR N  denote the 

ZNN ×P  matrices formed by evaluating the residuals of the equations (4.1) and (4.2) 

respectively, using the decision rule a)z;(p,p'  at the ZNN ×P  values of z)(p, .  We select the 

ZPM2M  elements of Aa , Na  so that the ZPM2M  equations,  '
ZAP (a)ARA  and 

 '
ZNP (a)ARA  are zero.  

 



Figure 1:  A hypothetical sequence of prices for an individual item in the CPI. 
 

 
                                      Price in $         11     •   •  

    R • × R • 
                                                              10     • •  R   R 

•  R R      
                                                               9 R •        

 S        
Month 1 2 3 4 5 6 7 8 9 

         
Price change indicator × 1 1 0 1 1 × 1 1 

Size of price change (in %) × –5 +10 × +10 –5 × +5 –5 
Duration Clock × 1 1 1 1 1 × 2 1 

         
Regular price change indicator × × 1 0 1 1 × 1 1 

Size of regular price change (in %) × × + 5 × +10 –5 × +5 –5 
Duration Clock × × 2 1 1 1 × 2 1 

 
R = regular price 
S = sale price 
 

Notes:  An × indicates that the variable is unavailable for that month.  In the text, for item i in month t the price change indicator is 
denoted itI , the size of the price change itdp , and the duration clock (gap in months between observations) itγ .  Equation (3.1) shows 
how these variables are used to estimate price change frequencies, for example. 
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Figure 2

Weighted Distribution of Regular Price Changes

Top 3 CPI areas
Jan 1988 through Jan 2005
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Figure 3

Weighted Distribution of Standardized Regular Price Changes

Top 3 CPI areas
Jan 1988 through Jan 2005
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Figure 4
Weighted Distribution of Times Between Regular Price Changes

Top 3 CPI areas
J 1988 th h J 2005
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Figure 5
Weighted Hazard Rates for Regular Prices
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Figure 6
Weighted Hazards for Regular Prices (vs. decile fixed effects)
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Figure 7

Weighted Average Size of Regular Price Changes by Age
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Figure 8
Size of Regular Price Changes by Age  (vs. decile fixed effects)
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Figure 9 
Extensive and Intensive Margins of Inflation
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Figure 10 
Inflation due to price increases and decreases (regular prices)
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Figure 11

Standardized Price Changes:  Models vs. Evidence

Top 3 CPI areas
67-sector GL, θ=10
67-sector GL, θ=2
67-sector Calvo
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Figure 12
Distribution of Price Durations:  Models vs. Evidence  

Top 3 CPI areas

67-sector GL, θ = 10

67-sector GL, θ = 2

67-sector Calvo

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 1-2 2-3 >3

W
ei

gh
te

d 
%

 o
f R

eg
ul

a

Months Between Regular Price Changes 

MONTHS YEARS



300%

Figure 13
Hazard rates (vs. decile fixed effects):  Models vs. Evidence 
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Figure 14
Size vs. Age (vs. decile fixed effects): Models vs. Evidence
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Table 1  

Monthly Frequencies and Implied Durations 
 

 
 
 

          Statistic 
 

 
Posted 
Prices 

 
Regular 
Prices 

 
Like 

Prices 

 
 

 x   
 

 

  Mean Frequency 0.362 0.299 0.313 
    

 
  Median Frequency 0.273 0.139 0.168 

 
    
  Implied Mean Duration 6.8 8.6 

  
7.8 

    
  Implied Median Duration 3.7 7.2 6.0 
 
 

   

 
Notes:  Samples run from January 1988 through January 2005 and include data from Top 3 urban areas.  All 
data is from the CPI-RDB.  The durations are inverses of the monthly frequencies.  Regular prices are posted 
prices excluding sale prices.  Like prices compare a regular (sale) price only to the previous regular (sale) price.  
Means and medians use weights based on the BLS consumer expenditure surveys and unpublished BLS point-
of-purchase surveys.    
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Table 2 
 

Durations Under Various Exclusions 
 

 
 
 

            Case 

 
Implied 
Median 
Duration 

 

 
Implied 
Mean 

Duration 

 
 

   
 

  Posted Prices 3.7 6.8 
   
  No V Shapes 5.3 7.7 
   
  Like Prices 6.0 7.8 

  
  Regular Prices 
 
  No Substitutions 
 
  Adjacent Prices 
 
  1998-2004 Only 
 

7.2 
 

8.7 
 

9.3 
 

10.6 

8.6 
 

10.4 
 

12.0 
 

13.4 

   
Notes:  Samples run from January 1988 through January 2005 and include data from 
the Top 3 urban areas.  All data is from the CPI-RDB.  The durations are inverses of 
the monthly frequencies.  Means and medians use weights based on the BLS 
consumer expenditure surveys and unpublished BLS point-of-purchase surveys.    
No V Shapes: lower middle prices are replaced with identical neighbors.   
 
Like prices: regular (sale) price is compared only to the previous regular (sale) price.  
 
Regular prices: posted prices excluding sale prices. 
 
No Substitutions: only regular prices in between item substitutions are compared.   
 
Adjacent Prices: only consecutive monthly regular prices in between substitutions.   
 
1998-2004 Only: sample is confined to 1998-2004 (otherwise Adjacent Prices).   



 42

Table 3  

Absolute Size of Price Changes 
 

 
 

            Sample 
 

 
Mean 

 
Median 

 
 

 x   
 

  Posted Prices 0.140 0.115 
 
 

  

  Regular Prices 0.113 0.097 
 
 

  

  Sale-Related Prices 0.251 0.233 
  

   
  Like Prices 0.118 0.110 
 
 

  

Notes:  Samples run from January 1988 through January 2005 and include data from 
Top 3 urban areas.  All data is from the CPI-RDB.  Means and medians use weights 
based on the BLS consumer expenditure surveys and unpublished BLS point-of-
purchase surveys. 

Regular prices are posted prices excluding sale prices. 

Sale-related prices: either the current or previous price is a sale price. 

Like prices: regular (sale) price compared only to the previous regular (sale) price. 
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Table 4  

Fraction of Price Changes Below Size Thresholds 
 

 
 

   Sample 
 

 
| | 5%itdp <  

 
| | 2.5%itdp <  

 
| | 1%itdp <  

 
 

     
 

  Posted Prices 0.398 0.234 0.113 
 
 

   

  Regular Prices 0.443 0.254 0.121 
 
 

   

  Like Prices 0.427 0.248 0.120 
 
 

   

 
Notes:  Samples run from January 1988 through January 2005 and include data from the Top 3 urban 
areas.  All data is from the CPI-RDB.  Regular prices are posted prices excluding sale prices.  Like prices 
compare a regular (sale) price only to the previous regular (sale) price.  Entries are weighted mean 
fractions of price changes that are smaller than 5%, 2.5%, or 1% in absolute value.   |dp it |   = the absolute 
size of price changes.  Weights are based on the BLS consumer expenditure surveys and unpublished BLS 
point-of-purchase surveys.    
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Table 5  

Standard Deviation of Completed Spells (in months) 
 

 
 

   Sample 
 
 

 
Within 
ELIs 

 
Within 

Quote-Lines 

 
 

  
 

  Posted Prices 6.2 4.3 
 
 

  

  Regular Prices 7.0 5.2 
   
   

Notes:  Samples run from January 1988 through January 2005 and include data from 
Top 3 urban areas.  All data is from the CPI-RDB.  Regular prices are posted prices 
excluding sale prices.  Weights are based on the BLS consumer expenditure surveys 
and unpublished BLS point-of-purchase surveys.      
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Table 6 

Time Series Moments for Regular Prices 
 

 
 

Regression on π 
 

Variable 
 

Mean, 
% 

 
St  Dev, 

% 

 
Correlation

with π Coef. St. Err. 
      

π   0.27 0.36    
fr   26.6 3.2 0.25 2.38 0.66 
dp   0.98 1.19 0.99 3.55 0.04 
fr+  15.0 2.6 0.69 5.48 0.41 
fr−  11.5 2.5    −0.41     −3.10       0.48 
dp+   8.87 1.10 0.19       0.64       0.23 
dp−   9.37 1.64    −0.19     −0.96 0.34 
pos   1.33 0.27 0.74       0.59 0.04 
neg   1.06 0.23    −0.60     −0.41 0.04 

      
 
Notes:  Samples run from January 1988 through January 2005 and include data from Top 3 urban areas.  
All data is from the CPI-RDB.  The entries are means, standard deviations and cross-correlations across 
time of the monthly values of each variable.  The last two columns are the OLS regression coefficient 
and standard error from regressing the variable in the first column on inflation. The monthly values of 
the variables are across-item weighted means from month 1t −  to t  of: 
 
 π t   = inflation. 
 fr t   = the fraction of items with changing prices. 
dp t  = the size of price changes (note not the absolute value). 
 fr+ t = the fraction of items with rising prices.   
 fr− t = the fraction of items with falling prices.   
dp+ t  = the size of price increases.  
dp− t  = the absolute size of price decreases.  
pos t  = fr+ t • dp+ t   
neg t  = fr− t • dp− t   
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Table 7 
 

Variance Decompositions 
 

 
 

IM vs. EM 
 

 
POS vs. NEG 

 
 

Sample 
IM term 

 
EM terms POS terms NEG terms 

     
Posted prices x  94% x  6% x 59% 41% 
     
Regular prices  91  9 59 41 
     

 
Notes:  All samples go from January 1988 through January 2005.  See equation (3.5) in the text for 
the definition of the IM term and the EM terms, and equation (3.9) for the definition of the POS 
terms and NEG terms.  All data is from the CPI-RDB.  
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Table 8 
 

Sticky Price Economies vs. BLS Facts 
 

 
Facts 

 

 
Golosov-

Lucas 
 

 
DKW 

 
Calvo 

 

 
Taylor 

     
frequent price changes 

 
 

Yes Yes Yes Yes 

large average absolute price changes 
 
 

Yes No Yes Yes 

many small price changes 
 
 

No Yes Yes Yes 

variable price durations 
 
 

Yes Yes Yes No 

flat hazard rates 
 
 

Yes No Yes No 

size of price changes does not 
increase with duration 

 

Yes No No No 

intensive margin dominates the 
variance of inflation 

 

Yes No Yes Yes 

frequency of price increases and 
decreases moves with inflation 

 

Yes Yes No No 

 
Notes:  The Table summarizes the success of sticky price models in matching the empirical evidence from the BLS 
micro data on retail prices in the Top 3 metropolitan areas of the U.S.  More details on the empirical evidence can be 
found in Section 3.  Each model’s performance in replicating the facts is discussed in Section 4. 
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