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Abstract

We model a financial market with investors that trade for informational and

liquidity reasons in a limit order book that is monitored by low-latency liquidity

providers. We apply our model to study the impact of the commonplace, but

controversial maker-taker fee system, which imposes differential trading fees on

liquidity providers (makers) and removers (takers). In our benchmark setting,

the maker-taker fees are passed through to all traders, and only the net fee (the

amount that the exchange receives) has an economic impact, consistent with the

previous literature. When instead some investors pay only the average exchange

fee, through a flat fee per transaction, a disparity in liquidity provision incentives

between investors and low-latency liquidity providers arises, and the split between

maker and taker fees matters. A decrease in the maker fee increases trading

volume, lowers trading costs, but decreases market participation by investors. Fi-

nally, we find that the common industry practice of subsidizing liquidity provision

through a negative maker fee is welfare enhancing.
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Equity trading around the world is highly automated. Exchanges maintain limit

order books, where orders to trade pre-specified quantities at pre-specified prices are

arranged in a queue, according to a set of priority rules.1 A trade occurs when an arriving

trader finds the terms of limit orders at the top of the queue sufficiently attractive and

posts a marketable order that executes against these posted limit orders.

To improve the trading terms, or liquidity, offered in their limit order books, many

exchanges incentivize traders who provide, or “make” liquidity. Specifically, trading

venues pay a rebate to submitters of executed limit orders, and they finance these re-

bates by levying higher fees to remove, or “take” liquidity on submitters of marketable

orders. This practice of levying different trading fees for liquidity provision and removal

is referred to as “maker-taker” pricing. Moreover, with the rise of algorithmic trading,

exchanges have adopted technology that offers extremely high-speed, or “low-latency”

market data transmission, in order to appeal to speed-sensitive participants. The re-

bates, along with the increased speed of trading systems, has given rise to “a new type

of professional liquidity provider”: proprietary trading firms that “take advantage of

low-latency systems” and provide liquidity electronically.2

The role of maker-taker pricing and the new low-latency computerized traders re-

mains controversial. Proponents maintain that the new trading environment benefits all

market participants through increased competition. Opponents argue that the increased

competition for liquidity provision makes it difficult for long-term investors to trade via

limit orders and that it compels them to trade with more expensive marketable orders.3

As a practical matter, however, many long-term investors do not pay taker fees directly

and do not receive maker rebates but instead pay a flat fee per trade to their broker.

1Most exchanges sort limit orders first by price, and then by the time of arrival, maintaining a
so-called price-time priority.

2SEC Concept Release on Market Structure, Securities and Exchange Commission (2010)
3See, e.g., GETCO’s comments on maker-taker fees in options markets to SEC (available at

http: //www.getcollc.com/images/uploads/getco comment 090208.pdf), in favor, and TD Securities’
comments on IIROC 11-0225 (www.iiroc.ca), Alpha Trading Systems’ September 2010 Newsletter
(http://www.alphatradingsystems.ca/, against.
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This practice of levying flat fees has recently become an additional issue in the debate,

after an industry study argued that the maker-taker pricing in its current form distorts

trading incentives and causes losses to long-term investors.4

In this paper, we develop a dynamic model to analyze trader behavior in the presence

of low-latency liquidity providers. We then employ our model to study the impact of

maker-taker fees on liquidity, trading volume, and market participation. We address

the effect of maker-taker fee implementation, by comparing investor trading incentives

in a benchmark setting, where all market participants incur maker and taker fees, to a

setting where long-term investors pay a flat fee per trade, which equals the average of per

trade fees charged by the exchange on long-term investor trades. Our model illustrates

that maker-taker pricing in its current form, where brokers do not pass maker rebates

and taker fees to long-term investors on a trade-by-trade basis, may have a detrimental

effect on investor market participation; however, it leads to an improvement in observed

trading costs and to an increase in trading volume.5

In our model, risk-neutral traders sequentially enter the market for a risky security

to trade on private information and for liquidity reasons. Traders may submit an order

to buy or sell one unit (one round lot) upon entering and only then, or may abstain from

trading. Trading in our model is organized via limit order book, and traders can choose

between submitting a limit order or a market order. Additionally, some traders trade

solely for the purpose of providing liquidity and they only submit limit orders. These

professional liquidity providers permanently monitor the market, compete in prices, (in

the sense of Bertrand competition) and posses a speed advantage that allows them to

react to changes in the limit order book faster than other market participants. We

4On May 10, 2012, Senator Schumer called on the Securities and Exchanges Commission to mandate
that taker fees and maker rebates are passed through to investors. Commenting on this, Larry Tabb of
market-research firm Tabb Group raised concerns that passing through the exchange fees may “disad-
vantage investors because they’re generally takers of liquidity” (The Wall Street Journal, “Schumer to
SEC: Fix ’Maker-Taker’ Fees”.).

5Addressing broker-dealer trading incentives and possible agency costs stemming from conflicts of
interest between investors and their brokers is outside the scope of this paper, and we may thus overstate
the benefits of the maker-taker pricing model.
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refer to them as low-latency liquidity providers, and we refer to traders that trade for

liquidity or informational needs as investors. Upon entering the market, an investor

observes the history of past transactions and quote revisions, as well as the current state

of the limit order book. Each investor has a private valuation for the security stemming

from liquidity needs, and additionally, receives private information about the value of

the security. Low-latency liquidity providers are uninformed and have no liquidity needs.

Our setup captures the low-latency liquidity providers’ speed advantage in interpret-

ing market data, such as trades and quotes. The speed advantage comes at a cost,

however, and low-latency liquidity providers are arguably at a disadvantage (relative to

humans or sophisticated algorithms) when processing more complex information, such

as news reports. We capture this difference in information processing skills by allowing

investors an informational advantage with respect to the security’s fundamental value.

The presence of low-latency liquidity providers lends tractability to our setup: com-

petition among them induces all limit order submitters to offer competitive prices and

thus pins down limit order prices in equilibrium. With competitive pricing, a limit order

price is the expected value of the security, conditional on submission and on execution

of this limit order. The price of, say, a buy limit order is then determined deterministi-

cally; loosely, by the average information of traders who submit buy limit orders and the

average information of traders who would submit sell market orders in the next period.

In equilibrium, a trader’s behavior is governed by their aggregate valuation, which

is the sum of his private valuation of the security and his expected value of the se-

curity. Traders with extreme aggregate valuations optimally choose to submit market

orders, traders with moderate valuations submit limit orders, and traders with aggregate

valuations close to the public expectation of the security’s value abstain from trading.

To analyze the impact of maker-taker fees and their implementation, we compare two

settings. In the benchmark setting, low-latency liquidity providers and investors both

incur maker and taker fees for executed limit and market orders, respectively. In the
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second setting, only low-latency liquidity providers access the exchange directly and pay

(possibly negative) maker fees. Investors, on the other hand, submit their orders via a

broker, who charges investors a flat fee per trade and who then pays taker fees directly

to and collects maker rebates directly from the exchange. We assume that brokers act

competitively, in the sense that the flat fee per trade is the average exchange fee that a

broker incurs per trade when executing trades on behalf of investors.

We specifically focus on the impact of the split of the total exchange fee into a maker

fee and a taker fee. Consistent with the previous literature (see Angel, Harris, and Spatt

(2011) and Colliard and Foucault (2012)), when maker-taker fees are passed through, the

split does not play an economically meaningful role in our model, because any decrease

in the maker fee is passed to the takers through a lower bid-ask spread, exactly offsetting

an increase in the taker fee.

When only low-latency liquidity providers pay maker fees, a decrease in a maker fee

will, ceteris paribus, lower the bid-ask spread and therefore induce investors who were

previously indifferent between a market and a limit order to trade with market orders

(since an investor’s trading cost consists, loosely, of the bid-ask spread and the flat fee

levied by their broker). Consequently, the probability of a market order submission

increases, and so does the trading volume (low-latency liquidity providers ensure that

the limit order book is always full in our setup).

We find numerically that, for a fixed total exchange fee, as the maker fee decreases

and the taker fee increases, investors submit more market orders, fewer limit orders, and

further, more investors choose to abstain from trading. This leads to brokers paying

taker fees more frequently and consequently charging investors a higher flat fee. The

increase in the flat fee is more than offset, however, by the decline in the bid-ask spread,

and investors’ overall trading costs decline. The marginal submitter of a market order

requires weaker information, and thus the price impact of a trade declines.

When the maker fee is sufficiently small (and negative, in our setup) and the taker
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fee is sufficiently large, in equilibrium, investors choose to trade exclusively with market

orders. The average fee charged by brokerages then equals the taker fee, and any changes

in it are exactly offset by changes in the quoted bid-ask spread. In particular, any

decrease in the maker fee that is financed by an increase in the taker fee then leads to

a decline in the quoted spreads, but yields no economically meaningful implications.

To analyze the impact of maker-taker fees on welfare, we follow Bessembinder, Hao,

and Lemmon (2012) and define a social welfare measure to reflect allocative efficiency.

Specifically, with each trade, the social gains from trade increase by the difference be-

tween the buyer’s and the seller’s private valuations, net of differences in trading fees,

and we define the social welfare to be the expected social gains per period. When the

maker fee declines (and the taker fee increases by the same amount), two changes hap-

pen. First, some investors switch from submitting limit orders to trading with market

orders, increasing the execution probability of their own order (to certainty), and also

increasing the execution probability of a limit order, the so-called fill rate, for the re-

mainder of the limit order submitters. Second, some investors switch from submitting

limit orders to abstaining from trade, failing to realize any potential gains from trade.

We find numerically that the benefit of an increased fill rate to investors who remain

in the market exceeds the loss of potential gains from trade to investors who choose to

leave the market, and that welfare increases as the maker fee declines. The prevalent

industry practice of setting a negative maker fee (i.e., a positive maker rebate) is thus

socially optimal.

Our paper is most closely related to Colliard and Foucault (2012) and Foucault,

Kadan, and Kandel (2012), who theoretically analyze the impact of maker-taker fees.

Colliard and Foucault (2012) study trader behavior in a model where symmetrically

informed traders choose between limit and market orders. They show that, absent fric-

tions, the split between maker and taker fees has no economic impact, and they focus

on the impact of the total fee charged by an exchange. Foucault, Kadan, and Kandel
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(2012) argue that in the presence of a minimum tick size, limit order book prices may

not adjust sufficiently to compensate traders for changes in the split between maker

and taker fees. They then show that exchanges may use maker-taker pricing to bal-

ance supply and demand of liquidity, when traders exogenously act as makers or takers.

Skjeltorp, Sojli, and Tham (2012) support theoretical predictions of Foucault, Kadan,

and Kandel (2012) empirically, using exogenous changes in maker-taker fee structure

and a technological shock for liquidity takers. They find that a decrease in taker fees

increases takers’ response speed to changes in liquidity, and they further identify pos-

itive liquidity externalities between makers and takers. We contribute to this strand

of literature by analyzing a different friction, namely, where maker-taker fees are only

passed through to investors on average. Our predictions on spreads, price impact, and

volume are supported empirically by Malinova and Park (2011), who study the impact

of the introduction of maker rebates on the Toronto Stock Exchange.

The maker-taker pricing model is related to the payment for order flow model, see,

e.g., Kandel and Marx (1999), Battalio and Holden (2001), or Parlour and Rajan (2003),

in the sense that both systems aim to incentivize order flow. Most recently, Battalio,

Shkilko, and Van Ness (2012) and Anand, McCormick, and Serban (2012) empirically

compare trading costs under the maker-taker pricing with those under the payment

for order flow structure in the U.S. options markets, where the two fee models co-

exist. Degryse, Achter, and Wuyts (2009) theoretically study the impact of clearing and

settlement fees on liquidity and welfare.

Our paper contributes to the broader theoretical literature on limit order markets,

see e.g., Glosten (1994), Parlour (1998), Foucault (1999), Foucault, Kadan, and Kandel

(2005), Goettler, Parlour, and Rajan (2005), and Rosu (2009), for limit order books with

uninformed liquidity provision, and Kaniel and Liu (2006), Goettler, Parlour, and Ra-

jan (2009), and Rosu (2011), for informed liquidity provision.6 Our analysis of investor

6See also the survey by Parlour and Seppi (2008) for further related papers.
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behavior in the presence of low-latency liquidity providers complements theoretical lit-

erature that focuses on the trading strategies of low-latency traders, see e.g., Biais,

Foucault, and Moinas (2012), McInish and Upson (2012), and Hoffmann (2012).

Finally, the role of low-latency traders as competitive liquidity providers is supported

empirically by e.g., Hasbrouck and Saar (2011), Hendershott, Jones, and Menkveld

(2011), Hendershott and Riordan (2012), and Jovanovic and Menkveld (2011).

1 The Model

We model a financial market where risk-neutral investors enter the market sequentially

to trade a single risky security for informational and liquidity reasons (as in Glosten and

Milgrom (1985)). Trading is conducted via limit order book. Investors choose between

posting a limit order to trade at pre-specified prices and submitting a market order to

trade immediately with a previously posted limit order. Additionally, we assume the

presence of low-latency liquidity providers, who choose to act as market makers, and

to only submit limit orders. These traders possess a speed advantage that allows them

to react to changes in the limit order book faster than other market participants. We

assume that they are uninformed and that they have no liquidity needs. Low-latency liq-

uidity providers compete in the sense of Bertrand competition, are continuously present

in the market, and they ensure that the limit order book is always full.

Security. There is a single risky security with an unknown liquidation value. This

value follows a random walk, and at each period t experiences an innovation δt. The

fundamental value at period t is given by

Vt =
∑

τ≤t

δτ (1)

Innovations δt are identically and independently distributed, according to density func-

tion ḡ on [−1, 1], which is symmetric around zero. We focus on intraday trading, and

7



we assume that extreme innovations to the security’s fundamental value are less likely

than innovations that are close to 0, (i.e., that ḡ′(·) ≤ 0 on [0, 1]).

Investors. There is a continuum of risk-neutral investors. At each period t, a

single investor randomly arrives at the market. Upon entering the market, the investor

is endowed with liquidity needs, which we quantify by assigning the investor a private

value for the security, denoted by yt, uniformly distributed on [−1, 1]. Furthermore, the

investor learns the period t innovation to the fundamental value, δt.
7

Investor Actions. An investor can submit an order upon arrival and only then. He

can buy or sell a single unit (round lot) of the risky security, or abstain from trading.8

If the investor chooses to buy, he either submits a market order and trades with an

existing order at the previously posted ask price askt in period t, or he posts a limit buy

order at the bid price bidt+1 in period t, for execution in period t+ 1. Similarly for the

decision to sell. Limit orders that are submitted in period t and that do not execute in

period t + 1 are automatically cancelled. An investor may submit at most one order,

and upon the order’s execution or cancellation the investor leaves the market forever.

Low-Latency Liquidity Providers. There is continuum of low-latency liquidity

providers who are always present in the market. They hold a speed advantage in reacting

to changes in the limit order book. These traders act as market makers and post limit

orders in response to changes in the limit order book. They compete in prices in the

sense of Bertrand competition. Low-latency liquidity providers are risk-neutral, they do

not receive any information about the security’s fundamental value, and they do not

have liquidity needs.

The Limit Order Book. Trading is organized via limit order book, which is

comprised of limit orders. Limit orders last for one period. Arguably, this simplifying

7Assuming that traders have liquidity needs is common practice in the literature on trading with
asymmetric information, to avoid the no-trade result of Milgrom and Stokey (1982). We also solved for
an equilibrium, assuming that only a fraction of traders become informed, with qualitatively similar
results.

8We will refer to investors in the male form, and we will refer to the low-latency liquidity providers
in the female form.
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assumption is particularly realistic in presence of low-latency traders, as slower investors

may fear that their orders become stale and will be “picked off” by the low-latency

traders. Low-latency liquidity providers ensure that the limit order book is always

“full” by submitting a limit order when there is no standing limit order on the buy or

the sell side. The limit order book thus always contains one buy limit order and one sell

limit order, upon arrival of an investor in period t. A trade occurs in period t when the

investor that arrives in period t chooses to submit a market order.

Trading Fees. The limit order book is maintained by an exchange that charges fees

for executing orders. These fees depend on the order type (market or limit), and they

may depend on the trader type; the trading fees do not depend on whether an order is a

“buy” or a “sell” and they are independent of t. We discuss further details in Section 3.

Public Information. Investors and low-latency liquidity providers observe the

history of transactions as well as limit order submissions and cancellations. We denote

the history of trades and quotes up to (but not including) period t by Ht. The structure

of the model is common knowledge among all market participants, but an investor’s

liquidity needs and his knowledge of an innovation to the fundamental value are private.

Low-Latency Liquidity Provider Information. Low-latency liquidity providers

are able to detect whether a newly posted limit order stems from an investor with liquid-

ity and informational needs or from other low-latency liquidity providers. This assump-

tion ensures that the model is tractable. We believe that it is consistent with reality,

because low-latency traders are allegedly good at identifying, for instance, larger institu-

tional orders. Further, within our model, low-latency liquidity providers react virtually

instantaneously to changes in the limit order book, whereas investors who trade for liq-

uidity and informational reasons arrive at discrete time intervals — consequently, limit

orders that are posted by low-latency liquidity providers are identified by the reaction

time. Finally, from a technical perspective, this assumption is equivalent to assuming

presence of a single low-latency liquidity provider who chooses to act competitively.
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Timing of Actions. We model intraday trading. Periods are measured in discrete

units (which we denote by t) with no specific beginning or end. Each period marks the

arrival of an investor. At the beginning of any period t, the limit order book is full in the

sense that it contains one buy limit order and one sell limit order. At each period t, an

investor enters the market, observes the transaction and quote history Ht, his liquidity

needs measured by his private valuation yt, and the innovation δt to the security’s value.

This investor posts a limit or a market order, or abstains from trading.

When a market order is posted, it executes against a limit order that was posted at

period t−1, and the investor leaves the market forever. The limit order book immediately

reacts to the information contained in the period t market order and the low-latency

liquidity providers post limit orders to buy and sell.

When a limit order is posted at period t, this order remains in the market until

the period t + 1 investor makes his trading choice. This limit order possibly interacts

with the period t + 1 investor’s market order. As with market orders, the limit order

book reacts to the information contained in the period t limit order, with a low-latency

liquidity provider posting a limit order on the opposite side of the book.

Investor Payoffs. The payoff to an investor who buys one unit of the security at pe-

riod t is given by the difference between the security’s fundamental value at period t, Vt,

and the price that the investor paid for this unit; similarly for a sell decision. We nor-

malize the payoff to a non-executed order to 0. Investors are risk neutral, and they aim

to maximize their expected payoffs. The period t investor with private valuation yt has

the following expected payoffs to submitting, respectively, a market buy order to trade

immediately at the prevailing ask price askt and a limit buy order at price bidt+1:

πMB
t (yt, δt) = yt + E[Vt | δt, Ht]− askt − feeMinv, (2)

πLB
t (yt, δt, bidt+1) = Pr(MSt+1(bidt+1) | δt, Ht)× (yt+ (3)

+E[Vt+1 |
(
δt, Ht,MSt+1(bidt+1)]− bidt+1 − feeLinv

)
,
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where MSt+1(bidt+1) represents the period t + 1 investor’s decision to submit a market

order to sell at price bidt+1 (this decision is further conditional on the additional infor-

mation available to the period t+1 investor); feeMinv and feeLinv denote the fees incurred by

investors when trading with market and limit orders, respectively. An investor’s payoff

to submitting a limit order at period t accounts for the fact that a limit order submitted

at period t either executes or is cancelled at period t + 1. We focus on the intraday

trading, and we assume no discounting. Payoffs to sell orders are defined analogously.

Low-Latency Liquidity Provider Payoffs. A low-latency trader observes the

period t investor’s action before posting her period t limit order. Moreover, she will

post a limit buy order at period t only if the period t investor does not post a buy

limit order.9 Denoting by feeLLLT the trading fee incurred by a low-latency trader when

her limit order is executed, a low-latency trader at period t has the following payoff to

submitting a limit buy order at price bidt+1 is given by

πLB
t,LLT(bidt+1) = Pr(MSt+1(bidt+1) | investor action at t, Ht) (4)

×
(
E[Vt+1 | Ht, investor action at t,MSt+1(bidt+1)]− bidt+1 − feeLLLT

)
,

2 Equilibrium: No Trading Fees

In this section, we assume that traders (both, investors and low-latency liquidity providers)

incur no trading fees.

2.1 Pricing and Decision Rules

Equilibrium Pricing Rule. We look for an equilibrium, in which low-latency liquidity

providers post competitive limit orders and make zero profits, in expectation. We denote

the equilibrium bid and ask prices at period t by bid∗t and ask∗t , respectively, and we

9With unit demands of investors, a low-latency trader has no incentive to post a limit order “into a
queue”: a market sell order that executes against the “first in the queue” order is informative, thus the
liquidity provider will not want to modify her “second in the queue” order upon execution of the first.
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use MB∗
t and MS∗

t denote, respective, the period t investor’s decisions to submit a market

buy order price ask∗t and a market sell order at price bid∗t .

The low-latency liquidity provider payoffs, given by equation (4), then implies the

following competitive equilibrium pricing rules:

bid∗t = E[Vt | Ht,MSt(bid
∗
t )] (5)

ask∗t = E[Vt | Ht,MBt(ask
∗
t )], (6)

where we used the fact that history Ht−1 together with the period t − 1 investor’s

action yield the same information about the security’s value Vt as history Ht (because

information about Vt is only publicly revealed through investors’ actions).

Investor Actions with Competitive Liquidity Provision. We focus on investor

choices to buy; sell decisions are analogous. An investor can choose to submit a market

order or a limit order, and, if he chooses to submit a limit order, technically, he may also

choose the limit price. We search for an equilibrium where low-latency liquidity providers

ensure that bid and ask prices are set competitively and equal the expected security

value, conditional on the information available to the low-latency liquidity providers.

An investor’s choice of the limit price is thus mute, since a limit order that is posted

at a price other than the prescribed, competitive equilibrium prices either yields the

submitter negative profits in expectation or does not execute, because of the presence

of low-latency traders. Because an investor is always able to obtain a zero profit by

abstaining from trade, we restrict attention to limit orders posted at the competitive,

equilibrium prices.

Non-Competitive Limit Orders. Formally, the zero probability of execution for

limit orders posted at non-competitive prices is achieved by defining appropriate beliefs

of market participants, regarding the information content of a limit order that is posted

at an “out-of-the-equilibrium” price (e.g., when the period t investor posts a limit or-

der to buy at a price different from bid∗t+1) — so-called out-of-equilibrium beliefs. The
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appropriate definition of out-of-equilibrium beliefs is frequently necessary to formally

describe equilibria with asymmetric information. To see the role of these beliefs in our

model, observe first that when an order is posted at the prescribed, competitive equilib-

rium price, market participants derive the order’s information content by Bayes’ Rule,

using their knowledge of equilibrium strategies. The knowledge of equilibrium strategies,

however, does not help market participants to assess the information content of an order

that cannot occur in equilibrium — instead, traders assess such an order’s information

content using out-of-the-equilibrium beliefs. We describe these beliefs in Appendix A,

and we focus on prices and actions that occur in equilibrium in the main text.

Investor Equilibrium Payoffs. Because innovations to the fundamental are inde-

pendent across periods, all market participants interpret the transaction history in the

same manner. A period t investor decision then does not reveal any additional informa-

tion about innovations δτ , for τ < t, and the equilibrium pricing conditions (5)-(6) can

be written as

bid∗t = E[Vt−1 | Ht] + E[δt | Ht,MSt(bid
∗
t )] (7)

ask∗t = E[Vt−1 | Ht] + E[δt | Ht,MBt(ask
∗
t )] (8)

The independence of innovations across time further allows us to decompose investors’

expectations of the security’s value, to better understand investor equilibrium payoffs.

The period t investor’s expectation of the security’s value at period t is given by

E[Vt | δt, Ht] = δt + E[Vt−1 | Ht]. (9)

When the period t investor submits a limit order to buy, his order will be executed at

period t + 1 (or never), and we thus need to understand this investor’s expectation of

the time t+ 1 value, conditional on his private and public information and on the order

execution, E[Vt+1 | δt, Ht,MSt+1(bid
∗
t+1)]. Since the decision of the period t + 1 investor
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reveals no additional information regarding past innovations, we thus obtain

E[Vt+1 | δt, Ht,MSt+1(bid
∗
t+1)] = E[Vt−1 | Ht] + δt + E[δt+1 | δt, Ht,MSt+1(bid

∗
t+1)] (10)

Further, the independence of innovations implies that, conditional on the period t in-

vestor submitting a limit buy order at price bid∗t+1, the period t investor’s private infor-

mation of the innovation δt does not afford him an advantage in estimating the inno-

vation δt+1 or the probability of a market order to sell at period t + 1, relative to the

information Ht+1 that will be publicly available at period t+1 (including the information

that will be revealed by the period t investor’s order). Consequently, the period t in-

vestor’s expectation of the innovation δt+1 coincides with the corresponding expectation

of the low-latency liquidity providers, conditional on the period t investor’s limit buy

order at price bid∗t+1.

The above insight, together with expressions (2)-(3) and (7)-(10), implies that an

investor’s expected payoffs to submitting market and limit buy orders, respectively, can

be written as

πMB
t (yt, δt) = yt + δt − E[δt | Ht,MBt(ask

∗
t )] (11)

πLB
t (yt, δt) = Pr(MSt+1(bid

∗
t+1) | LBt(bid

∗
t+1), Ht)

(
yt + δt − E[δt | LBt(bid

∗
t+1), Ht]

)
.(12)

Investor Equilibrium Decision Rules. An investor submits an order to buy if,

conditional on his information and on the submission of his order, his expected profits

are non-negative. Moreover, conditional on the decision to trade, an investor chooses

the order type that maximizes his expected profits. An investor abstains from trading

if he expects to make negative profits from all order types.

Expressions (11)-(12) illustrate that the period t investor payoffs, conditional on the

order execution, are determined by this investor’s informational advantage with respect

to the period t innovation to the fundamental value (relative to the information content
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revealed by the investor’s order submission decision) and by the investor’s private valua-

tion of the security. Our model is stationary, and in what follows, we restrict attention to

investor decision rules that are independent of the history but are solely governed by an

investor’s private valuation and his knowledge of the innovation to the security’s value.

When the decision rules at period t are independent of the history Ht, the public

expectation of the period t innovation, conditional on the period t investor’s action, does

not depend on the history either. Expressions (11)-(12) reveal that neither do investor

equilibrium payoffs. Our setup is thus internally consistent in the sense that the assumed

stationarity of the investor decision rules does not preclude investors from maximizing

their payoffs.

Expected payoffs of a period t investor are affected by the realizations of his private

value yt and the innovation δt only through the sum of this investor’s realized private

value yt and his expectation of δt, conditional on the period t investor’s information. We

thus focus on decision rules with respect to this sum, and we refer to it as the aggregate

valuation, and we denote the period t investor’s aggregate valuation by

zt = yt + δt. (13)

The aggregate valuation zt is symmetrically distributed on the interval [−2, 2].

2.2 Equilibrium Characterization

We first derive properties of market and limit orders that must hold in equilibrium.

Our setup is symmetric, and we focus on decision rules that are symmetric around

the zero aggregate valuation, zt = 0. We focus on equilibria where investors use both

limit and market orders.10 Appendix A establishes the following result on the market’s

10Any equilibrium where low-latency liquidity providers are the only liquidity providers closely re-
sembles equilibria in market maker models in the tradition of Glosten and Milgrom (1985). In such an
equilibrium, trading roles are pre-defined and maker-taker fees have no economic impact. We discuss
further details in the Supplementary Appendix.
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reaction to market and limit orders.

Lemma 1 (Informativeness of Trades and Quotes) In an equilibrium where in-

vestors use both limit and market orders, both trades and investors’ limit orders contain

information about the security’s fundamental value; a buy order increases the expectation

of the security’s value and a sell order decreases it.

Lemma 1 implies that a price improvement stemming from a period t investor’s limit

buy order at the equilibrium price bid∗t+1 > bid∗t increases the expectation of a security’s

value. In our setting, such a buy order will be immediately followed by a cancellation

of a sell limit order at the best period t price ask∗t and a placement of a new sell limit

order at the new ask price ask∗t+1 > ask∗t by a low-latency liquidity provider.

Lemma 2 (Equilibrium Market and Limit Order Submission) In any equilibrium

with symmetric time-invariant strategies, investors use threshold strategies: investors

with the most extreme aggregate valuations submit market orders, investors with mod-

erate aggregate valuations submit limit orders, and investors with aggregate valuations

around 0 abstain from trading.

To understand the intuition behind Lemma 2, observe first that, conditional on order

execution, an investor’s payoff is determined, loosely, by the advantage that his aggregate

valuation provides relative to the information revealed by his order (see expressions (11)-

(12)). Second, since market orders enjoy guaranteed execution, whereas limit orders do

not, for limit orders to be submitted in equilibrium, the payoff to an executed limit order

must exceed that of an executed market order. Consequently, the public expectation of

the innovation δt, conditional on, say, a limit buy order at period t, must be smaller than

the corresponding expectation, conditional on a market buy order at period t (in other

words, the price impact of a limit buy order must be smaller than that of a market buy

order). For this ranking of price impacts to occur, investors who submit limit orders
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must, on average, observe lower values of the innovation than investors who submit

market buy orders. With symmetric distributions of both, the innovations and investor

private values, we arrive at the previous lemma.

2.3 Equilibrium Existence

Utilizing Lemmas 1 and 2, we look for threshold values zM and zL < zM such that

investors with aggregate valuations above zM submit market buy orders, investors with

aggregate valuations between zL and zM submit limit buy orders, investors with ag-

gregate valuations between −zL and zL abstain from trading. Symmetric decisions are

taken for orders to sell. Investors with aggregate valuations of zM and zL are marginal,

in the sense that the investor with the valuation zM is indifferent between submitting a

market buy order and a limit buy order, and the investor with the valuation zL is indiffer-

ent between submitting a limit buy order and abstaining from trading. Using (11)-(12),

and the definition of the aggregate valuation (13), thresholds zM and zL must solve the

following equilibrium conditions

zM − E[δt | MBt] = Pr(MSt+1)
(
zM − E[δt | LBt]

)
(14)

zL = E[δt | LBt], (15)

where the stationarity assumption on investors’ decision rules allows us to omit condi-

tioning on the history Ht; MBt denotes a market buy order at period t, which occurs

when the period t investor aggregate valuation zt is above z
M (zt ∈ [zM , 2]), LBt denotes

a limit buy order at period t (zt ∈ [zL, zM)), and MSt+1 denotes a market order to sell

at period t + 1 (zt+1 ∈ [−2,−zM ]). Given thresholds zM and zL, these expectations

and probabilities are well-defined and can be written out explicitly, as functions of zM

and zL (and independent of the period t).

Further, when investors use thresholds zM and zL to determine their decision rules,
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the bid and ask prices that yield zero profits to low-latency liquidity providers, given by

the expressions in (7)-(8), can be expressed as

bid∗t = pt−1 + E[δt | zt ≤ −zM ] (16)

ask∗t = pt−1 + E[δt | zt ≥ zM ], (17)

where pt−1 ≡ E[Vt−1|Ht]. The choice of notation for the public expectation of the

security’s value recognizes that this expectation coincides with a transaction price in

period t − 1 (when such a transaction occurs). Expanding the above expressions one

step further, for completeness, investors who submit limit orders to buy and sell at

period t, in equilibrium, will post them at prices bid∗t+1 and ask∗t+1, respectively, given by

bid∗t+1 = pt−1 + E[δt | zt ∈ [zL, zM)] + E[δt+1 | zt+1 ≤ −zM ] (18)

ask∗t+1 = pt−1 + E[δt | zt ∈ (−zM ,−zL]] + E[δt+1 | zt+1 ≥ zM ] (19)

Finally, note that since the innovations are distributed symmetrically around 0, the

public expectation of the period t value of the security at the very beginning of period t,

E[Vt|Ht], equals pt−1. We prove the following existence theorem in Appendix A:11

Theorem 1 (Equilibrium Characterization and Existence) There exist threshold

values zM and zL, with 0 < zL < zM < 2, that solve indifference conditions (14)-(15).

These threshold values constitute an equilibrium for any history Ht, given competitive

equilibrium prices, bid∗t and ask∗t in (16)-(17), for the following trader decision rules.

The investor who arrives at period t with aggregate valuation zt

• places a market buy order if zt ≥ zM ,

• places a limit buy order at price bid∗t+1 if zL ≤ zt < zM ,

• abstains from trading if −zL < zt < zL.

Investors’ sell decisions are symmetric to buy decisions.

11Appendix A further provides the out-of-the-equilibrium beliefs that support the equilibrium prices
and decision rules, described in Theorem 1.
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3 Equilibrium With Trading Fees

Limit order books are maintained by exchanges that charge fees for executing orders.

In what follows, we study the so-called maker-taker fee system, now common practice

in equity markets worldwide. Under this system, exchanges charge different fees for

trading with market and limit orders. For most of our discussion, we focus on the

prevalent practice where the exchange only charges traders to remove, or take, liquidity

and subsidizes traders who provide, or make, liquidity. The fee levied on market order

submitters is referred as the “taker fee”, and the rebate paid to submitters of executed

limit orders is referred to as the “maker rebate”. The intuition for our results extends

for the reverse scenario where market order submitters receive a rebate and submitters

of executed limit orders pay a positive fee.12 Exchange fees are independent of whether

the order is a buy order or a sell order.

We further assume that investors (who trade for informational and liquidity reasons)

submit their orders via broker, whereas low-latency liquidity providers access the market

directly. Brokers submit all traders’ orders to the limit order book for execution, pay

taker fees on market orders and receive maker rebates on executed limit orders. We

assume that brokers act competitively and make zero profits on an average trade. We

compare two settings. In the benchmark model, brokers pass the taker fees and maker

rebates to the investors on a trade-by-trade basis. In the second, arguably more realistic

setting, brokers charge investors a flat fee per trade. We assume that this fee is set to

be the average fee incurred by a broker for executing an investor’s order. Low-latency

liquidity providers connect to the exchange directly in both settings, and they receive

maker rebates on a trade-by-trade basis.13

We denote the taker fee by f ta and the maker fee by fma. The total fee charged by

12This “inverted” pricing is often referred to by industry participants as “taker-maker pricing”, as it
is utilized, for instance, by NASDAQ OMX BX.

13Since low-latency liquidity providers only submit limit orders, they do not incur taker fees. The
assumption of connecting directly is thus equivalent to them connecting through brokers who charge
differential fees to low-latency liquidity providers, relative to the rest of the investors.
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the exchange for an executed trade is f total = f ta + fma. When discussing the intuition

for our results, we will focus on f ta > 0 and fma < 0 (a rebate).

3.1 Benchmark Model: Investors Pay Maker-Taker Fees

We first assume that irrespective of their identity, submitters of market orders pay the

taker fee and submitters of executed limit orders receive the rebate.

Equilibrium Pricing Rule: Low-latency traders continue to ensure competitive

pricing in the limit order book and continue to make zero profits in expectation. With

a positive maker rebate, liquidity providers are willing to pay more than the expected

value of the security when buying, and they are willing to accept less than the expected

value when selling the security. The zero profit equilibrium bid and ask prices, given by

expressions (7)-(8) in the absence of trading fees, become

bid∗t = E[Vt−1 | Ht] + E[δt | Ht,MSt(bid
∗
t )]− fma (20)

ask∗t = E[Vt−1 | Ht] + E[δt | Ht,MBt(ask
∗
t )] + fma (21)

Ceteris paribus, a rebate to submitters of executed limit orders narrows the bid-ask

spread, ask∗t − bid∗t , by twice the amount of the rebate. An investor’s expected payoffs

to market and limit orders, given by (2)-(3), can be written as

πMB
t (yt, δt) = yt + E[Vt | δt, Ht]− askt − f ta, (22)

πLB
t (yt, δt, bidt+1) = Pr(MSt+1(bidt+1) | δt, Ht) (23)

× (yt + E[Vt+1 | δt, Ht,MSt+1(bidt+1)]− bidt+1 − fma) .

Using conditions (20)-(21) on the equilibrium bid and ask prices, expressions (22)-(23)

can be rewritten analogously to (11)-(12), to reveal that the maker-taker fees only affect
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an investor’s expected payoffs through the total exchange fee f total = f ta + fma:

πMB
t (yt, δt) = yt + δt − E[δt | Ht,MBt(ask

∗
t )]− f total (24)

πLB
t (yt, info on δt) = Pr(MSt+1(bid

∗
t+1)) | LBt(bid

∗
t+1), Ht) (25)

×
(
yt + δt − E[δt | LBt(bid

∗
t+1), Ht]

)
.

Since an investor’s payoffs do not depend on the split between the taker fee and the

maker rebate (and low-latency liquidity providers make zero profits), in this setting

this split has no economically meaningful impact (but it does affect the quoted bid-ask

spread), consistent with Colliard and Foucault (2012).

Proposition 1 (Independence of the Maker-Taker Split) Investors’ equilibrium strate-

gies and payoffs only depend on the total fee charged by the exchange, f total = f ta+fma.

3.2 The Flat Fee Model

We now study the market where brokers do not pass through the taker fees and maker

rebates, but instead charge investors a flat fee per trade, instead of passing through

taker fees and maker rebates per trade. We assume that brokers act competitively, in

the sense that they charge each investor the fee that yields the brokers zero profits in

expectation. Since the limit order book is always full, the period t investor’s market

order will incur a taker fee with certainty, and a period t investor’s limit order to buy

(sell) will receive a maker rebate, provided that a market order to sell (buy) is submitted

in period t+1. The expected fee f̄t that the broker pays to the exchange for the period t

investor’s order, conditional on the execution of this order, is then given by

f̄t =
f ta · [Pr(MB∗

t ) + Pr(MS∗
t )] + fma · [Pr(LB∗

t ) · Pr(MS∗
t+1) + Pr(LSt) · Pr(MB∗

t+1)]

Pr(MB∗
t ) + Pr(MS∗

t ) + Pr(LB∗
t ) · Pr(MS∗

t+1) + Pr(LS∗
t ) · Pr(MB∗

t+1)

(26)
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where LB∗
t and MB∗

t denote the period t investor’s market and limit orders to buy at

the equilibrium bid and ask prices; likewise for the sell orders and orders in period t+1.

As in Section 2, we focus on an equilibrium where investors use stationary, time-

invariant threshold strategies with respect to their aggregate valuation zt = yt + δt.

Because innovations δt to the security’s value and investor private valuations yt are

identically and independently distributed across time, probabilities of market and limit

orders to buy and to sell are time-invariant. We continue to focus on a symmetric

equilibrium, where investors decisions to buy and sell are symmetric with respect to the

aggregate valuation zt = 0, so that the probability of a market buy order then equals the

probability of a market sell order; likewise for limit orders. Consequently, the expected

per-investor fee does not depend on period t. Denoting this fee by f̄ and writing Pr(LB∗)

for the probability of a limit (buy) order in equilibrium, we simplify (26) to

f̄ =
f ta + fma · Pr(LB∗)

1 + Pr(LB∗)
(27)

Since low-latency liquidity providers receive maker rebates and act competitively,

limit order book prices are determined by the same conditions as in the benchmark

model (conditions (20)-21)). Investor payoffs, however, are affected by the flat fee f̄ .

With the decision rules being stationary, these payoffs are given by

πMB(yt, δt) = yt + δt − (E[δt | MB∗
t ] + fma)− f̄ (28)

πLB(yt, δt) = Pr(MS∗
t+1 | LB

∗
t )
(
yt + δt − (E[δt | LB

∗
t ]− fma)− f̄

)
, (29)

where LB∗
t and MB∗

t denote investors’ limit and market buy orders at the equilibrium

competitive prices; the stationarity of investor decision rules allows us to drop the depen-

dence on the history. Substituting in the expression for the zero-profit flat fee charged
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by brokers and using f ta + fma = f total, we obtain

πMB∗

(yt, δt) = yt + δt − E[δt | MB∗
t ]−

f total + 2fma · Pr(LB∗
t )

1 + Pr(LB∗
t )

(30)

πLB∗

(yt, δt) = Pr(MSt+1 | LB
∗
t ) (31)

×

(
yt + δt − E[δt | LB

∗
t ]−

f total − 2fma

1 + Pr(LB∗
t )

)
.

Equations (30)-(31) illustrate, in particular, that when only investors pay a flat fee per

trade, their payoffs are affected by the maker (or taker) fee beyond the effect of the

total exchange fee. The split between the taker fee and the maker rebate will thus be

economically relevant in this setting.

3.3 Equilibrium Characterization

Colliard and Foucault (2012) analyze the impact of the total fee on trader behavior. We

focus instead on the split of the exchange fee into the taker fee and the maker rebate. In

what follows, we set the total fee that the exchange charges to 0, so that f ta = −fma,

and we use the notation f ≡ f ta.

The Benchmark Model. When the total fee charged by the exchange is set to 0,

the benchmark model is economically equivalent to the model in absence of fees, de-

scribed in Section 2, in the sense that conditions that the defined threshold decision rules

for investors are the same. To see this, observe that when f total = 0, equations (24)-(25)

that determine investor payoffs are the same as equations (11)-(12). Equilibrium con-

ditions on investor thresholds in the benchmark model then coincide with those in the

absence of fees (conditions (14)-(15)).

The only difference between the no-fee setting to the benchmark model is the quoted

bid-ask spread. Specifically, for any prior expectation pt−1 = E[Vt|Ht] of the security’s
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value Vt, the bid and ask equilibrium prices in the benchmark model with fees satisfy

bid∗t = pt−1 + E[δt | zt ≤ −zM ] + f (32)

ask∗t = pt−1 + E[δt | zt ≥ zM ]− f, (33)

where, as before, we use zM to denote the threshold aggregate valuation of the investor

who is indifferent between submitting a limit order and a market order (investors with

valuations zt above zM submit market buy orders, investors with zt below −zM submit

market sell orders). When f = 0, conditions (32)-(33) coincide with conditions (16)-(17)

on the equilibrium bid and ask prices in the absence of the fees.

In the absence of fees, the bid-ask spread is positive as long as market orders are

informative. When f 6= 0, however, this is no longer the case. Equations (32)-(33) imply

that in a symmetric equilibrium, ask∗t − bid∗t > 0 if and only if

f < E[δt | zt ≥ zM ]. (34)

Proposition 2 (Existence in the Benchmark Model) There exist values zM and zL,

with 0 < zL < zM < 2, that solve indifference conditions (14)-(15). These values to-

gether with equilibrium prices bid∗t and ask∗t given by (32)-(33) constitute an equilibrium,

with decision rules described in Theorem 1, if and only if condition (34) is satisfied.

The Flat Fee Model. With f = f ta = −fma, the flat fee (expression (27)) is

f̄ =
1− Pr(LB∗)

1 + Pr(LB∗)
· f (35)

Expression (35) illustrates, in particular, that the flat fee has the opposite sign of the

maker rebate. In particular, when the maker rebate is positive, brokers always set

a positive flat fee (despite the zero total fee). The presence of low-latency liquidity

providers ensures that market orders always execute, whereas limit orders only execute

when another investor submits a market order. Low-latency liquidity providers must
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capture a fraction of the maker rebates, leaving investors to pay a positive exchange fee.

Lemma 3 (Flat Fee) The flat fee f̄ set by brokers is positive when the maker rebate

is positive, and it is negative when the maker rebate is negative.

Our further results on the flat fee model are numerical. We employ the following family

of distributions of the innovation parameter δt, for α ≥ 1.14

ḡ(δ, α) =





(1−δ)(α−1)

α
if δ ≥ 0

(1+δ)(α−1)

α
if δ ≤ 0

(36)

The distribution family includes the uniform distribution (α = 1).

We numerically search for an equilibrium, with properties similar to those in Sec-

tion 2. Specifically, we look for an equilibrium where investors use threshold rules that

are symmetric and that do not depend on the history, such that investors with most

extreme aggregate valuations trade with market orders, investors with moderate aggre-

gate valuations trade with limit orders, and investors with aggregate valuations around 0

abstain from trading. The equilibrium indifference conditions are analogous to condi-

tions (14)-(15), except that they are adjusted for the exchange fees, using (30)-(31):15

zM − E[δt | MBt] + f − f̄ = Pr(MSt+1)
(
zM − E[δt | LBt]− f − f̄

)
(37)

zL = E[δt | LBt] + f + f̄ .

4 Impact of Fees on Liquidity and Volume

We continue to assume that the total fee charged by the exchange is set to 0, so that

the maker rebate equals the taker fee, f ta = −fma = f . We analyze the impact of

an increase in the maker rebate (and the taker fee), measured by an increase in f , on

14Density 2ḡ is a Beta-distribution on [0,1].
15Numerically, the solution is always unique. If it were not unique, we would focus on the one that

delivers the smallest bid-ask spread in equilibrium.
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quoted and cum-fee bid-ask spreads, trading volume, and market participation. The

quoted bid-ask spread is the difference between the ask and bid prices. The cum-fee

spread additionally accounts for the fee paid by a submitter of a market order; this fee

is the taker fee in the benchmark model and the flat fee f̄ in the flat fee model. We

measure market participation by the probability that an investor does not abstain from

submitting an order, and we measure trading volume by the probability that an investor

submits a market order (since market orders always execute in our setting).

Proposition 2 implies the following result for the benchmark model.

Corollary 1 (Impact of Fees in the Benchmark Model) In an equilibrium of the

benchmark model, thresholds zM and zL, market participation, trading volume, and cum-

fee bid-ask spreads are independent of f . Quoted bid ask-spreads decline in f .

The values of observable variables in the benchmark model coincide with the correspond-

ing values in the flat fee model for f = 0. The discussion below examines the flat fee

model for the case of a zero total exchange fee.

Trading Volume and Market Participation. Equations (28)-(29), which define

investor payoffs in a flat fee model, illustrate that, ceteris paribus, an increase in the

maker rebate provides investors with incentives to switch from limit to market orders.

All else equal, such an increase will decrease the spread, thus increasing the payoff to

market orders and simultaneously reducing the payoff to limit orders. In contrast to

the benchmark model, however, changes in the bid-ask spread are not offset by the

changes in investor fees — because the flat fee charged by brokers does not depend on

the order type. Since trade occurs in our model when a market order is submitted, an

increase in the probability of a market order implies an increase in trading volume.

The impact on investors who were previously indifferent between submitting a limit

order and abstaining from trading is more complex. On the one hand, ceteris paribus,

as traders increase their usage of market orders, limit orders are submitted by less
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informed traders, the price impact of a limit order declines, and limit orders become

more attractive. On the other hand, an increase in the maker rebate leads to a decline

in the bid-ask spread, making limit order prices less attractive to investors who do not

receive the rebate. Numerical simulations reveal that the latter effect dominates in our

setting; that is, market participation declines.

What happens when the maker rebate is very large? As the taker fee and

the maker rebate increase, threshold zM decreases and threshold zL increases. When the

maker rebate is sufficiently high (relative to the spread), a limit order yields negative

profits to investors in expectation, because they do not receive maker rebates. When

this happens, low-latency liquidity providers become the only submitters of limit orders,

while investors trade exclusively with market orders. As a consequence, the flat fee equals

the taker fee. The marginal submitter of a market order is then exactly indifferent

between submitting a market order and abstaining from trading, and he earns zero

expected profits. We denote the aggregate valuation of such a marginal submitter by z0,

and the value of f that yields zM = zL = z0 in equilibrium by f0. Using investor payoffs,

given by expression (28), together with f̄ = f ta = −fma, we find that z0 solves

z0 − E[δt|zt ≥ z0] = 0. (38)

A further increase in the maker rebate (above f0) then leads to a further decline in the

quoted spread but does not have an effect on investors payoffs, because a decline in the

quoted spread is exactly offset by an increase in the average fee, which equals the taker

fee. As with the benchmark model, an equilibrium fails to exist when the maker rebate

is so large that the bid-ask spread becomes nonpositive. Similarly to condition (34) for

the benchmark model, the bid-ask spread remains positive for fees f that are below

value f1 that solves

f1 = E[δt | zt ≥ zM0 ] (39)
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What happens when the maker rebate is negative? When f = f ta = −fma < 0,

i.e. limit order submitters pay a positive fee for executed orders, whereas market order

submitters receive a positive taker rebate, liquidity providers offer less than the expected

value of the security when buying and they demand more than the expected value when

selling the security. As a consequence, as the maker fee (−f) increases from 0, quoted

spreads widen. Investors pay a flat fee (in this case, the fee is negative, so they receive

a flat positive rebate), therefore market orders become less attractive to them and limit

orders become more attractive.

Intuitively, when the maker fee is positive and high (f is low and negative), the bid

ask spread becomes too wide, market orders earn negative profits for all investors (even

after accounting for the positive flat rebate that investors receive on each transaction),

and trade does not occur. We denote the level of the taker fee f where this occurs by fNT .

Furthermore, as the positive maker fee (−f > 0) increases from 0 and the spread

widens, investors who receive a positive flat rebate per transaction, irrespective of the

order type, are more willing to submit limit orders. In particular, there may exist values

of f < 0 such that an investor with the aggregate valuation of 0 is willing to submit

a limit order — because the bid price that he would pay in the event his buy limit

order executes is lower than indicated by the average information content of limit orders

(because of the positive maker fee imposed on the low-latency liquidity providers) and

additionally this investor receives a positive flat rebate. Our numerical simulations show

that fNT is below this value, i.e., that there is a range of values of the taker fee such

that all investors participate in the market (by trading with a limit or a market order).

Figure 2 illustrates the following observation on order submission decisions.

Numerical Observation 1 (Fee Thresholds and Investor Equilibrium Actions)

There exist fNT , f0, f1, with fNT < 0 < f0 < f1, such that in the flat fee model

(i) investors submit both market and limit orders in equilibrium with f < f0;

(ii) investors submit only market orders in equilibrium when f0 ≤ f < f1;
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(iii)a stationary equilibrium with trade does not exist when f ≥ f1 or f < fNT .

Threshold fNT is the highest value of f that yields zM = 2, f0 is the value of f that

yields solutions zM = zL = zM0 to equations (37), and threshold f1 solves (39).

Figure 3 illustrates the following observation on probabilities of order submissions

and the implications for trading volume and market participation.

Numerical Observation 2 (Volume and Market Participation) In the flat fee model,

as the taker fee increases and the maker decreases (f increases), for fNT < f ≤ f0, the

probability that an investor

(i) submits a market order increases (trading volume increases);

(ii) submits a limit order decreases;

(iii)abstains from trading (weakly) increases (market participation declines).

These probabilities do not depend on f when f0 ≤ f < f1.

Quoted Bid-Ask Spread. As the maker rebate increases (f increases), more in-

vestors submit market orders, that is they submit aggressive orders for lower values of

the innovations δt. Furthermore, as f increases, the bid-ask spread declines because

low-latency liquidity providers compete the benefits of the increased rebate away. Both

of these effects lead to a decline in the quoted bid-ask spread.

Cum-Fee Bid-Ask Spread. The cum-fee spread accounts for the fee that an

investor pays to his broker:

cum-fee spread = ask∗t − bid∗t + 2f̄ , (40)

where the factor 2 accounts for the fact that the bid-ask spread is a cost of a round-trip

transaction, so that the fee is paid twice. As the maker rebate increases (f increases),

the probability of a limit order declines, and expression (35) reveals that f̄ increases as

long as f < f0. Numerically, this increase is more than offset by the decline in the quoted

spread, so that the cum-fee spread declines. Figure 4 illustrates the following observation
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Numerical Observation 3 (Quoted and Cum-Fee Spreads: Flat Fee) As the taker

fee and the maker rebate increase (f increases), for fNT < f < f1,

(i) the quoted bid-ask spread declines;

(ii) the broker flat fee f̄ increases;

(iii) the cum-fee spread declines for f < f0 and is independent of f for f ≥ f0.

Price Impact. The price impact of a trade measures the change in the public

expectation following the execution of a trade. In our model, this change is determined,

loosely, by the information content of market orders about the time-t innovation δt.

Specifically, the price impact of a buyer-initiated transaction is given by:

price impactbuy,t = E[Vt | MBt]− pt−1 = E[δt | MBt]. (41)

Using expression (33) for the equilibrium ask price ask∗t , we find that for a positive maker

rebate ( f > 0) the price impact of a trade is higher than indicated by a transaction price:

price impactbuy,t = E[δt | MBt] = ask∗t + f − pt−1 > ask∗t − pt−1. (42)

Figure 5 illustrates the above relation between the quoted half-spread, ask∗t − pt−1.

Numerical Observation 2 illustrated, in particular, that as the taker fee f increases

from 0 to f0, the marginal submitter of a market order requires a lower aggregate valua-

tion. Consequently, market orders are submitted for lower absolute values of realizations

of the time t innovations δt. This insight explains the following numerical observation,

illustrated by Figure 5.

Numerical Observation 4 (Price Impact: Flat Fee) The price impact of a trade is

decreasing in f on [fNT , f0], and constant on (f0, f1].

Numerical Observation 4 is supported empirically by Malinova and Park (2011).
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5 Impact of Fees on Welfare

When investors pay a flat fee per trade, an increase in the maker rebate f reduces

the zero-profit bid-ask spread. The decline in the bid-ask spread makes market orders

relatively more attractive and limit orders relatively less attractive to investors who pay

a flat fee per trade. As a result, some investors who would submit limit orders in the

absence of maker-taker pricing choose to abstain from trading when the maker rebate is

positive. At the same time, submitters of limit orders with higher valuations choose to

switch to market orders, increasing the probability of execution for their orders, or the

fill rate, (to certainty) and also for other investors’ limit orders. While investors who

choose to abstain from trading fail to realize their gains from trade, the remainder of

limit order submitters realize gains from trade more frequently. The impact of maker-

taker pricing on the aggregate welfare intuitively depends on whether welfare loss from

a decline in market participation (by limit order submitters) is offset by a welfare gain

stemming from an increase in the fill rate for the remainder of investors.

Each investor in our setting has a private valuation for the security, and we follow

Bessembinder, Hao, and Lemmon (2012) to define a social welfare measure that reflects

allocative efficiency. Specifically, we define welfare as the expected gain from trade in

the market for a given period t. If a transaction occurs in period t, then the welfare gain

is given by the private valuation of a buyer, net of the trading fee paid by the buyer,

minus the private valuation of a seller, net of the trading fee paid by the seller.

A transaction in period t occurs when the period t investor submits a market buy

or a market sell order. Focusing on a submitter of a buy market order: this investor

trades with the period t − 1 investor if the period t − 1 investor submitted a limit sell

order and he trades with a low-latency liquidity provider otherwise. With a flat fee

set to equal the average fee paid by an investor, the expected aggregate fee on each

transaction is zero. Accounting for the fact that a low-latency liquidity supplier has a

zero private valuation, by symmetry, we obtain the following expression for the welfare
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(further details and explicit expressions are in the Appendix A):

Wt = 2 · Pr(MBt) (E[yt | Ht,MBt]− Pr(LSt−1) · E[yt−1 | Ht−1,MBt,LSt−1]) . (43)

Proposition 2 implies the following result for the benchmark model.

Corollary 2 (Welfare: Benchmark Model) In an equilibrium of the benchmark model,

welfare is independent of f .

Figure 6 illustrates the following observation on the impact of maker-taker pricing

on social welfare.

Numerical Observation 5 (Social Welfare: Flat Fee) Expected total welfareWt is

increasing in f on [fNT , f0], and constant on (f0, f1].

In a world where exchange maker-taker fees are only passed through on average,

our results suggest that positive maker rebates have a positive effect on social welfare.

Allocative efficiency is highest when investors only trade with market orders (or not at

all). An implication of our result on social welfare is that it is socially beneficial for

investors and low-latency liquidity providers to specialize: investors submitting market

orders, and; low-latency liquidity providers providing liquidity.

6 Conclusion

We develop a model to analyze a financial market where investors trade for informational

and liquidity reasons in a limit order book that is permanently monitored by low-latency

liquidity providers. We employ our model to study the impact of maker-taker fees,

focussing on the current practice of the implementation of these fees. Maker-taker

pricing, in its most common form, refers to a pricing scheme where exchanges pay

traders a maker rebate to post liquidity and charge traders a positive taker fee to remove
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liquidity, and more, generally to a fee system that levies different fees for liquidity

provision and removal.

We find that when all traders pay the maker-taker fees, investor behavior is affected

only through the total fee charged by the exchange (the taker fee minus the maker

rebate), consistent with Colliard and Foucault (2012). When, however, investors only

pay the average maker-taker fee, through a “flat fee” per trade, the split of the total

exchange fee into the maker fee and the taker fee also plays a meaningful role, because

it differentially affects the incentives of low-latency liquidity providers and of investors.

When the maker fee declines, low-latency liquidity providers quote lower bid-ask spreads.

Consequently, investors who pay a flat fee per trade have an incentive to switch from

limit orders to market orders.

The empirical predictions of our model support the industry’s opinions on the impact

of maker-taker pricing on long-term investors. Indeed, we predict that if a positive maker

rebate is introduced (financed by an increase in the taker fee), investors trade on the

liquidity demanding side more frequently, that they submit fewer limit orders, and that

more of them choose to abstain from trading altogether. Our model also predicts an

increase in the average exchange fee that a broker incurs when executing client orders,

consistent with industry concerns. Contrary to industry opinions, we find that trading

costs for liquidity demanders decrease, because a decline in the quoted spreads more

than offsets the increase in the average exchange fee. One key contributor to the decline

in trading costs for liquidity demanders is the decrease in price impact of trades —

they become less informative, as less-informed investors trade aggressively, using market

orders. Malinova and Park (2011) find empirical support for our predictions.

When the exchange charges a positive maker rebate, but brokers charge an average

flat fee, maker-taker pricing affects investors’ order choices and thus allocative efficiency.

We find that an increase in the maker rebate leads investors to realize gains from trade

more frequently, resulting in a positive maker rebate being socially optimal.
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Our results have several policy implications. First, we find that in markets where

brokers charge investors a flat fee per trade, the levels of maker and taker fees has

an economic effect beyond that of the total exchange fee. A decrease in the maker

fee decreases trading costs for market order submitters. When the fee is negative and

sufficiently low, an equilibrium fails to exist in our model, as the bid-ask spread declines

to zero. Our predictions may thus shed light on locked markets, where a bid price in

one market equals the ask price in another. Our results suggest that locked markets

occur more frequently when the maker rebates/taker fees are sufficiently large and that

locked markets may arise, for instance, when low-latency liquidity providers post only

bid quotes in one market and only ask quotes in the other.

Second, our results show that competition among brokers is not sufficient to neu-

tralize the impact of the maker-taker fees — when the fee is passed through on average,

investors’ trading incentives are different to the situation where investors pay taker fees

and receive maker rebates for each executed trade.

Third, we reiterate the prevailing academic opinion on the importance of accounting

for the exchange trading fees (See, e.g., Angel, Harris, and Spatt (2011), Colliard and

Foucault (2012), or Battalio, Shkilko, and Van Ness (2012).) A lower quoted spread

need not imply lower trading costs for investors, and, consequently routing orders to the

trading venue that is quoting the best price need not guarantee the best execution.

Fourth, we caution that the causal relations among trading volume, trading costs,

and competition for liquidity providers are more complex than the taken-at-face-value

intuition would suggest. An increase in volume in our setting is driven by changes

in investor trading behavior. These changes necessitate a higher rate of participation

by low-latency liquidity providers, which may manifest empirically as an increase in

competition among low-latency liquidity providers.16 Hence, an empirically observed

increase in competition need not be the driving force of changes in trading volume

16In our model, low-latency liquidity providers compete in prices; empirical assessments typically
measure competition in quantities.
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and trading costs. Our results further highlight that trading volume in a limit order

market, where some traders specialize in liquidity provision, is not determined by market

participation of investors.

Our work focusses on the impact of maker-taker fees on investor trading behavior,

and through it, on trading costs, market participation, volume, and social welfare. We

acknowledge that several tradeoffs permit us to tractably analyze this impact, and our

results must be interpreted with these tradeoffs in mind.

First, the tractability of our setup stems from the presence of low-latency liquidity

providers: competition among them induces all limit order submitters to offer competi-

tive prices and thus pins down limit order prices in equilibrium. Analyzing the impact of

low-latency trader behavior on the remainder of the market participants is outside the

scope of our model. Instead, our goal is to study a limit order market where low-latency

traders are present and where their presence ensures competitive liquidity provision.

Second, we focus on investor trading incentives, assuming that brokers act compet-

itively, and we study a single market. When markets are fragmented, brokers have a

choice of where to send their client orders. Since trading fees differ across trading venues,

a broker that charges investors a flat fee per trade, may have a conflict of interest with

respect to the best execution for the client versus the lowest exchange fee. Such conflicts

do not arise in our model, and we may thus understate investor trading costs.
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A Appendix

This Appendix provides proofs and necessary derivations that are omitted from the

main part of the paper. It is preliminary, and it is incomplete in the current version of

the paper. This version of the Appendix only provides a proof sketch for the existence

theorem (Theorem 1); the intuition for the remainder of the results is in the main text.

A.1 Preliminary Notation

Innovation δt is distributed on [-1,1], symmetrically around 0, according to the density

function ḡ. On [0, 1], we have ḡ(·) = g(·)/2, where g is a density function, and g is

declining. Denote the relevant distribution function by G. Since g is declining, we

obtain the following bounds on the density:

g(δ) <
G(δ)

δ
and g(δ) >

1−G(δ)

1− δ
. (44)

As in the main text, we denote the prior on the asset value at time t by vt, and we use zt

to denote the period t investor’s aggregate valuation, zt = yt + δt.

We will employ the following notation (spelled out for buys, sells are similarly),

abusing it and omitting t subscripts, since we are looking for a stationary equilibrium:

• For the expected innovation δt, conditional on a market buy order at time t:

EMδ := E[δt|market buy at time t] (45)

• For the expected innovation δt, conditional on a limit buy order at time t, which

is posted at the competitive equilibrium price:

ELδ := E[δt|limit buy at time t] (46)

• For the probability of a market sell at time t + 1:

prM := Pr[market sell at t+ 1] = Pr[market buy at t + 1] = Pr[market buy at t]

(47)

• For the probability of a limit buy order at time t:

prL := Pr[limit buy at t] = Pr[limit sell at t] (48)
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In what follows, we will treat ELδ and EMδ as functions of the relevant thresholds (as

opposed to their equilibrium values).

A.2 Proof of Theorem 1

Equilibrium thresholds solve equations (14). Using notation defined Section in A.1,

the symmetry and the stationarity of the equilibrium that we are looking for, these

conditions can be rewritten as

zM − EMδ = prM(zM − ELδ), (49)

zL − ELδ. (50)

An informed trader will submit a market buy over a limit buy as long as zt ≥ zM ,

will submit a limit buy if zM > zt ≥ zL, and will abstain from trading otherwise. To

show existence of a threshold equilibrium, we need to show existence of thresholds zM

and zL and prove the optimality of trader strategies.

We proceed in 4 steps. In step 1, we show that for any given zM ∈ [0, 3/4] there exists

the unique zL that solves (50).17 We denote this solution by zL∗ (z
M ) and show, in Step 2,

that zL∗ (z
M ) is increasing in zM . In Step 3, we show that there exists zM that solves

zM − EMδ = prM(zM − zL∗ (z
M)). (51)

Finally, in Step 4, we show the optimality of the strategies and discuss out-of-equilibrium

beliefs that support these strategies in a perfect Bayesian equilibrium.

A.2.1 Step 1: Existence and Uniqueness of zL∗ (z
M )

We first derive the expression for ELδ in terms of the model primitives:

ELδ =

∫ 1

−1
dδ

∫ 1

−1
dy(δ · hL(δ, y|LB))

∫ 1

−1
dδ

∫ 1

−1
dy(hL(δ, y|LB))

, (52)

where function hL(δ, y|LB) is defined as follows:

hL(δ, y|LB) =

{
1
2
· ḡ(δ), if δ ∈ [zL − 1, 1] and y ∈ [zL − δ, zM − δ]

0, otherwise.
(53)

17Threshold 3/4 may seem arbitrary, but we can also show that there does not exist zM > 3/4 that
solves (49) for ELδ ≥ 0 )(i.e., when investors use both market and limit orders).
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The denominator of (52) equals the probability of a limit buy order submission prL, and

we will use one more piece of short-hand notation:

num(ELδ) :=

1∫

−1

dδ

∫ 1

−1

dy(δ · hL(δ, y|LB)) (54)

Using this notation, we then have ELδ = num(ELδ)/prL. Substituting hI in, putting

in appropriate integral bounds and expressing f as a function of g, we express the

probability of a limit buy as follows:

prL =
1

4

(
1 +G(1− zL)

)
· (zM − zL)−

1

4

1−zL∫

1−zM

(δ − (1− zM ))g(δ)dδ

≡ γL · (zM − zL)−
1

4

1−zL∫

1−zM

(δ − (1− zM))g(δ)dδ, (55)

where γL is defined accordingly. Note that, using this notation,

∂prL

∂zL
= −γL. (56)

Probability prL can also be expressed as

prL = γM · (zM − zL) +
1

4

1−zL∫

1−zM

(1− zL − δ)g(δ)dδ, (57)

where γM ≡ 1/4µ(1 +G(1− zM)). We then have

∂prL

∂zL
= γM . (58)

The numerator of the ELδ function can be expressed as

num(ELδ) = −
1

4

1−zL∫

1−zM

δ(1− zL − δ)g(δ)dδ +
1

4
(zM − zL)

1∫

1−zM

δg(δ)dδ, (59)
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where we used the following identity zM − zL = (1− zL − δ) + (zM − 1 + δ). Note that

∂num(ELδ)

∂zL
= −

1

4

1∫

1−zL

δg(δ)dδ ≡ −βL, and (60)

∂num(ELδ)

∂zM
=

1

4

1∫

1−zM

δg(δ)dδ ≡ βM , and (61)

Lemma 4 (Bounds on ELδ) Expectation ELδ satisfies ELδ < zM/2.

Proof Sketch: We use the following bounds on expressions for num(ELδ) and prL:

num(ELδ) ≤
1

4
(zM − zL)

1∫

1−zM

δg(δ)dδ and prL ≥ γM · (zM − zL)

to obtain

ELδ ≤
(1−G(1− zM )E[δ|δ ≥ 1− zM ]

1 +G(1− zM )
<

zM

2
.

Details are below, where we prove existence of the threshold zL; specifically, see equation

(65).

Lemma 5 (Monotonicity of ELδ) Function ELδ increases in zL and in zM :

(i) ∂ELδ/∂zL > 0 and (ii) ∂ELδ/∂zM > 0.

Proof of (i): Differentiating ELδ with respect to zL, we obtain

∂ELδ

∂zL
=

1

prL

[
∂num(ELδ)

∂zL
− ELδ

∂prL

∂zL

]
=

1

prL

(
γLELδ − βL

)
.

Since prL ≥ 0 (with equality only at zL = zM), it suffices to show that prL(γLELδ−βL) >

0 for all zL ∈ [0, zM). We will show that prL(γLELδ− βL) is strictly decreasing in zL on

[0, zM0. The desired inequality then follows because prL(γLELδ − βL) = 0 at zL = zM .

Differentiating prL(γLELδ − βL), we obtain

∂(prL(γLELδ − βL))

∂zL
= −

1

4
(1− zL + ELδ)g(1− zL) < 0 (62)
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Proof of (ii): Differentiating ELδ with respect to zM , we obtain

∂ELδ

∂zM
=

1

prL

[
∂num(ELδ)

∂zM
− ELδ

∂prL

∂zM

]
=

1

prL

(
βM − γMELδ

)
.

The derivative is positive if βMprL − γMnum(ELδ) > 0. Expanding this,

βMprL − γMnum(ELδ) =
1

4

1−zL∫

1−zM

δ(1− zL − δ)g(δ)dδ ·
(
γM + βM

)
> 0 (63)

Lemma 6 (MLRP Results) For a family of densities g(δ|θ) that obeys MLRP in θ,

i.e. for θ1 > θ2, g(δ|θ1)/g(δ|θ2) increases in δ, (i) probability of a limit buy prL decreases

in θ, and (ii) expectation ELδ decreases in θ.

Proof: to be typeset. (It is obtained by direct computation, using the definition of the

monotone likelihood ratio property).

Lemma A.2.1 implies that solution zL is largest for the uniform distribution of in-

novations δt. Hence, if this solution is below zM/3 then zL is below zM/3 for any dis-

tribution ḡ. Results for the uniform distribution can be obtained by direct (numerical)

computation.

Existence of zL∗ (z
M ). First, we establish that for any given zM there exists zL∗ (z

M ) ∈

[0, zM ] that solves the indifference condition for the marginal limit order buyer (50). To

see this, observe that

• At zL = 0, we have ELδ > 0 = zL, since

num(ELδ) =
1

4

1∫

1−zM

δ(δ − (1− zM − 1))g(δ)dδ > 0;

• At zL = zM , we have ELδ > 0 = zL.

To see this, note that both, prL and num(ELδ) are 0 at zL = zM . Hence,

ELδ|zL=ym =
∂num(ELδ)/∂zL |zL=zM

∂prL/∂zL |zL=zM
=

(1/4) ·
∫ 1

1−zM
δg(δ)dδ

(1/4) + (1/4) ·G(1− zM)

=
(1−G(1− zM )E[δ | δ ≥ 1− zM ]

1 +G(1− zM )
(64)

≤
(1−G(1− zM )(2− zM)/2

1 +G(1− zM )
≤

zM

2
,
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where the inequalities follow because the uniform distribution FOSD G (hence,

E[δ | δ ≥ 1− zM ] ≤ (2− zM)/2 and G(1− zM ) ≥ 1− zM .

• Existence then follows by continuity of ELδ.

Lemma 7 (Bounds on zL∗ (z
M)) Any zL that solves zL = ELδ for a given zM must be

below zM/2.

Proof: The lemma follows since (i) ELδ is increasing in zL and (ii) at zL = zM we have

ELδ < zM/2.

Uniqueness of zL∗ (z
M ). To show uniqueness, we will show that for a fixed zM

function z(zL, zM ) = ELδ−zL only crosses 0 once on [0, zM ]. Note that z(0) > 0 > z(zM ).

Since z(·) is continuous, it suffices to show that at zL such that z(zL) = 0, we have

∂z/∂zL < 0. (That is z(·) must cross 0 from above and cannot touch the x-axis).

• We need to show that at zL such that z(zL) = 0 (in what follows “at solution”),

we have ∂ELδ/∂zL < 1.

• At solution, ∂ELδ/∂zL < 1 ⇔ prL > γLELδ − βL ⇔ prL > γLzL − βL. Note that

γLzL − βL =
1

2
zL −

1

4
(1−G(1− zL))(E[δ | δ > 1− zL] + zL)

We thus need to show that

prL >
1

2
zL −

1

4
(1−G(1− zL))(E[δ | δ > 1− zL] + zL). (65)

• At at zL such that z(zL) = 0, we have zL ·prL = num(ELδ). Rewrite this as follows:

1

2
(zM − zL)zL =

1

4

1−zL∫

1−zM

(δ − zL) · (δ − (1− zM )) · g(δ)dδ

+
1

4
(zM − zL)(1−G(1− zL))E[δ | δ > 1− zL] + zL]

Use the above to rewrite inequality (65) as follows.

prL > −
1

4

1

zM − zL

1−zL∫

1−zM

(δ − zL) · (δ − (1− zM )) · g(δ)dδ (66)
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Next, write the probability prL explicitly and rewrite (66) as

1

4
(zM−zL)+

µ

4
(zM−zL)G(1−zL)+

1

4

1−zL∫

1−zM

(
δ − zL

zM − zL
−1)·(δ−(1−zM))·g(δ)dδ > 0,

which is equivalent to

(
1

4
+G(1− zL)

)
(zM − zL) +

1

4

1−zL∫

1−zM

δ − zM

zM − zL
· (δ− (1− zM)) · g(δ)dδ > 0, (67)

The first term is always positive. The second term is positive for zM ≤ 1/2 (since

δ > 1− zM ≥ zM ). ⇒ remains to prove the above inequality for zM > 1/2. Denote

the left-hand side of the above inequality by ∆L. Observe that ∆L = 0 at zL = zM

(the first term is 0, and the second is 0 by l’Hôpital’s rule). It thus suffices to show

that ∆L decreases in zL on [0, zM ]. Compute the appropriate derivative:

∂∆L

∂zL
= −

1

2
+

1

4

(
−g(1− zL)(1− zL − zM )

+
1

(zM − zL)2

1−zL∫

1−zM

(δ2 − δ + zM(1− zM ))g(δ)dδ

+(1−G(1− zL))− (zM − zL)g(1− zL)
)
.

Since δ2− δ is minimized at δ = 1/2, the upper bound on the integral term depends

on zL. There are three possibilities (for zL < zM and zM < 1/2):

(i) For zL < 1 − zM < 1/2 < zM , we have, for δ ∈ [1 − zM , 1 − zL], δ2 − δ <

(1− zL)2 − (1− zL), and further, 1− zL − zM > 0. Thus

1−zL∫

1−zM

(δ2 − δ + zM(1− zM ))g(δ)dδ <
(1− zL − zM )(zM − zL)

(zM − zL)2

1−zM∫

1−zL

g(]δ)dδ

< (1− zL − zM )g(1− zL).

Consequently, since 1−G(1− zL) < 1,

∂∆L

∂zL
< −

1

2
+

1

4
(1−G(1− zL))−

1

4
(zM − zL)g(1− zL) < 0.
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(ii) For 1 − zM < zL < 1/2 < zM , we have, for δ ∈ [1 − zM , 1 − zL], δ2 − δ <

(1 − zM)2 − (1 − zM ), and further, 1 − zL − zM < 0 and 2zL − 1 < 0. The

integral term is then negative. Consequently, since 1−G(1− zL) < 1,

∂∆L

∂zL
< −

1

2
+

1

4
(1−G(1− zL)) +

1

4
(2zL − 1)g(1− zL) < 0.

(iii) For 1 − zM < 1/2 < zL < zM , we have, for δ ∈ [1 − zM , 1 − zL], δ2 − δ <

(1 − zM)2 − (1 − zM ), and further, 1 − zL − zM < 0 and 2zL − 1 > 0. The

integral term is then negative, and we have

∂∆L

∂zL
< −

1

4
−

1

4
G(1− zL) +

1

4
(2zL − 1)g(1− zL).

Using the upper bound on g from expressions (44), it remains to show that

−1−G(1− zL) + (2zL − 1)
G(1− zL)

1− zL
< 0.

The above inequality is true for all zL < 3/4, since:

−(1− zL) + (−1 + zL + 2zL − 1)G(1− zL) < 4zL − 3 < 0.

• We have thus shown that function z(zL, zM) = ELδ − zL only crosses 0 once on

[0, zM ].

This completes the argument on existence and uniqueness of zL that solves the

indifference equation for the limit order buyer, for all zM ∈ [0, 3/4].

A.2.2 Step 2: Monotonicity of zL∗ (z
M )

To show that zL increases in zM , it suffices to show that the partial derivative of z(zL, zM)

in zM is positive (the positive partial derivative implies that z, viewed as a function of

zL, will then necessarily cross 0 further to the right, since it crosses from above). This

is equivalent to showing that ∂ELδ/∂zM > 0, which in turn follows from (Lemma 5).

A.2.3 Step 3: Existence of zM

We need to show existence and uniqueness of zM that solves equation (51):

zM − EMδ = prM(zM − zL∗ (z
M)).
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Notation and Preliminary Properties Similarly to ELδ, we need to derive the

expression for EMδ; omit subscripts t. We are assuming that zM ∈ [0, 3/4].

EMδ =

∫ 1

−1
dδ

∫ 1

−1
dy(δ · hM(δ, y | LB))

prM
,

where function hM(δ, y | MB) is defined as follows:

hM (δ, y | MB) =

{
1
2
· f(δ), if δ ∈ [zM − 1, 1] and y ∈ [zM − δ, 1];

0, otherwise.

and prM = Pr[MB] is given by prM =
∫ 1

−1
dδ

1∫
−1

dy(hM(δ, y | MB)). One more piece

of short-hand notation: num(EMδ) := µ
∫ 1

−1
dδ

∫ 1

−1
dy(δ · hM(δ, y | MB)). Using this

notation, we then have EMδ = num(EMδ)/prM .

Substituting hM in, putting in appropriate integral bounds and expressing f as a

function of g, we express the probability of a market buy as follows:

prM =
1

4
(1− zM ) +

1

4
(1− zM ) G(1− zM) +

1

4

1∫

1−zM

δg(δ)dδ ≡ γM · (1− zM ) + βM ,

where γM and βM are defined accordingly (and the same as in Steps 1-2). Next, derive

the expression for num(EMδ):

num(EMδ) =
1

4

1−zM∫

0

2δ2g(δ)dδ +
1

4

1∫

1−zM

δ(1− zM + δ)g(δ)dδ

Taking derivatives, we obtain:

dprM

dzM
= −γM < 0, and

dnum(EMδ)

dzM
= −βM < 0. (68)

Lemma 8 (Monotonicity of EMδ) Expectation EMδ increases in zM .

Proof: Differentiating EMδ with respect to zM , we obtain

∂EMδ

∂zM
=

1

prM

[
∂num(EMδ)

∂zM
− EMδ

∂prM

∂zM

]
=

1

prM

(
γMEMδ − βM

)
.
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Since prM > 0, it suffices to show that prM(γMEMδ − βM) < 0 for all zM ∈ [0, 1] and

prM(γMEMδ − βM) ≥ 0 at zM = 1. Differentiating prM(γMEMδ − βM), we obtain

d(prM(γMEMδ − βM))

dzM
= −

1

4
prM(1− zM + EMδ)g(1− zM ) < 0

To show that prM(γMEMδ − βM) ≥ 0 at zM = 1, we need to show that at zM = 1,

γMnum(EMδ)− prMβM ≥ 0. When zM = 1, we have γM = 1/2 and thus

γMnum(EMδ)− prMβM =
1

2

1

4

1∫

0

δ2g(δ)dδ −


1

4

1∫

0

δg(δ)dδ




2

≥
1

16




1∫

0

δg(δ)dδ




2

> 0

Lemma 9 (MLRP Results) For a family of densities g(δ | θ) that obeys MLRP in

θ, i.e. for θ1 > θ2, g(δ | θ1)/g(δ | θ2) increases in δ, (i) probability of market buy prM

decreases in θ, and (ii) expectation EMδ decreases in θ.

Proof: To be typeset (the result follows by direct computation, utilizing properties

of MLRP).

Existence of zM . We need to show existence of zM that solves equation (51), i.e.,

we need

(1− prM)zM − EMδ + prMzL∗ (z
M )) = 0

Existence follows by continuity. At zM = 0, the LHS =−EMδ < 0 (the inequality is

strict, because num(EMδ) > 0 and prM > 0). At zM = 3/4, we have

(1− prM)zM − EMδ + prMzL∗ (z
M)) > (1− prM)zM − EMδ

> (1− prM)zM − EMδ |for uniform distribution g> 0.

A.2.4 Step 4: Optimality of the Threshold Strategies

The intuition for the optimality of the threshold strategies stems from competitive pric-

ing and stationarity of investor decisions. An investor’s deviation from one equilibrium

action to another equilibrium action will not affect equilibrium bid and ask prices or

probabilities of the future order submissions. Consequently, it is possible to show that

the difference between a payoff to a market order and a payoff to a limit order at the

equilibrium price to an investor with an aggregate valuation above zM is strictly greater

than 0. (The formal argument is to be typeset).

Out-Of-The-Equilibrium-Beliefs. A more complex scenario arises when an in-

vestor deviates from his equilibrium strategy by submitting an limit order at a price
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different to the prescribed competitive equilibrium price. Whether or not this investor

expects to benefit from such a deviation depends on the reaction to this deviation by

the low-latency liquidity providers and investors in the next period. For instance, can

an investor increase the execution probability of his limit buy order by posting a price

that is above the equilibrium bid price?

We employ a perfect Bayesian equilibrium concept. This concept prescribes that

investors and low-latency liquidity providers update their beliefs by Bayes rule, whenever

possible, but it does not place any restrictions on the beliefs of market participants when

they encounter an out-of-equilibrium action.

To support competitive prices in equilibrium we assume that if a limit buy order is

posted at a price different to the competitive equilibrium bid price bid∗t+1, then market

participants hold the following beliefs regarding this investor’s knowledge of the period t

innovation δt.

• If a limit buy order is posted at a price b̂id < bid∗t+1, then market participants

assume that this investor followed the equilibrium threshold strategy, but “made a

mistake” when pricing his orders. A low-latency liquidity provider then updates his

expectation about δt to the equilibrium value and posts a buy limit order at bid∗t+1.

The original investor’s limit order then executes with zero probability.

• If a limit buy order is posted at a price above b̂id > bid∗t+1, then market participants

believe the this order stems from an investor from a sufficiently high aggregate valu-

ation (e.g., zt = 2) and update their expectations about δt to E[δt | b̂id] accordingly

(to E[δt | b̂id] = 1 if the belief on zt is zt = 2). The new posterior expectation

of Vt equals to pt−1 + E[δt | b̂id]. A low-latency liquidity provider is then willing

to post a competitive bid price bid∗∗t+1 = pt−1 + E[δt | b̂id] + E[δt+1 | MSt+1]. With

the out-of-the-equilibrium belief of zt = 2, a limit order with the new price bid∗∗t+1

outbids any limit buy order that yields investors positive expected profits.

The beliefs upon an out-of-equilibrium sell order are symmetric. The above out-of-

equilibrium beliefs ensure that no investor deviates from his equilibrium strategy.

We want to emphasize that these beliefs and actions do not materialize in equilibrium.

Instead, they can be loosely thought of as a “threat” to ensure that investors do not

deviate from their prescribed equilibrium strategies.
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Figure 1: Entry and Order Submission Timeline

This figure illustrates the timing of events upon the arrival of an investor at an arbitrary period, t, until their departure from the market.
Value yt is the private valuation of the period t investor and δt is the innovation to the security’s fundamental value in period t.

t

Period t investor

enters market,

learns yt and δt

Period t investor

submits order (if any)

Period t− 1 limit orders either

trade against the period t market order

or get cancelled

Period t− 1 investor

leaves market

Low-latency liquidity providers post limit

orders to empty side(s) of the book

t+1

Period t+ 1 investor

enters market,

learns yt+1 and δt+1

Period t+ 1 investor

submits order (if any)

Period t limit orders either

trade against the period t+ 1 market order

or get cancelled

Period t investor

leaves market
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Figure 2: Equilibrium Thresholds and Payoffs to the Marginal Market and Limit Orders: Flat Fee Model

The left panel depicts the equilibrium aggregate valuations zM (red line) and zL (blue line) for the marginal market and limit order
submitters, respectively. The right panel depicts the expected payoff that the investors with an aggregate valuation of zM and zL receive
in equilibrium, as functions of the taker fee f . Both panels are for the setting where investors pay a flat, average fee per trade. An
investor submits a market buy order when his aggregate valuation zt is above zM , a limit buy order when zL ≤ zt < zM , and abstains
from trading when |zt| < zL; sell decision are symmetric to buy decisions. The plot illustrates that as f increases, investors submit more
market orders and fewer limit orders. There exist the level of the taker fee, fNT = −1.5 < 0 and f0 > 0, at which the investor with
aggregate valuation zM receives zero profit from submitting a market order. The plot illustrates that investors only submit limit orders
for values of f < f0. Parameter α in the distribution of innovations is set to α = 1; results for other values of α are qualitatively similar.
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Figure 3: Trading Volume and Market Participation: Flat Fee Model

The left panel plots trading volume, measured as Pr(market order), as a function of the taker fee f , for the setting where investors pay a
flat fee per trade. The right panel plots the level of market participation, measured as Pr(market order) + Pr(limit order), as a function
of the taker fee level f . The value f0 represents the taker fee level at which the equilibrium threshold values zM and zL coincide, and the
marginal market order submitter zM earns zero profits in expectation. Parameter α in the distribution of innovations is set to α = 1;
results for other values of α are qualitatively similar.
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Figure 4: Quoted and Cum-Fee Spreads

The left panel plots the quoted spread (the inner, blue lines) and the cum-fee spread (the outer, red lines) as a function of the taker
fee f , for the benchmark setting. The right panel plots the quoted spread (the inner, blue lines) and the cum-fee spread (the outer, red
lines) as a function of the taker fee f , for the setting in which the investor pays a flat fee per trade. The value f0 represents the taker
fee level at which the equilibrium threshold values zM and zL coincide, and the marginal market order submitter zM earns zero profits
in expectation. Parameter α in the distribution of innovations is set to α = 1; results for other values of α are qualitatively similar.
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Figure 5: Price Impact

The left panel plots price impact, quoted, and cum-fee half-spreads as functions of the taker fee f for the benchmark setting where
investors pay exchange maker-taker fees per trade. The right panel plots price impact, quoted, and cum-fee half-spreads as functions
of the taker fee f for the setting in which investors pay a flat fee per trade. The value f0 represents the taker fee level at which
the equilibrium threshold values zM and zL coincide, and the marginal market order submitter zM earns zero profits in expectation.
Parameter α in the distribution of innovations is set to α = 1; results for other values of α are qualitatively similar.
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Figure 6: Social Welfare: Flat Fee Model

The figure plots total expected social welfare, as defined in Section 5, as a function of the taker fee f , for the setting where investors pay
a flat fee per trade. The value f0 represents the taker fee level at which the equilibrium threshold values zM and zL coincide, and the
marginal market order submitter zM earns zero profits in expectation. Parameter α in the distribution of innovations is set to α = 1;
results for other values of α are qualitatively similar.
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