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Abstract

We investigate how settlement banks in CHAPS, the United Kingdom�s large-value payment
system, react to outages experienced by counterparties. If banks do not su¢ ciently moni-
tor their outgoing payments, operational shocks can impact the entire payment system: the
stricken bank absorbs liquidity. We �rst build a game-theoretic model in which a bank�s
decision to make payments depends on whether another bank experiences operational prob-
lems, and on the time of day at which the outage occurs. We then investigate these reactions
empirically using a non-parametric method. Our theory predicts that banks stop paying to a
stricken bank early in the day, when they are uncertain about the payment instructions they
might have to execute. When this uncertainty has been resolved (later in the day), healthy
banks make payments even to stricken banks. Both predictions are supported by the data.
We show that this behaviour e¤ectively contains the disruption caused by the operational
outage: payment �ows between healthy banks remain virtually uninterrupted.

JEL codes: G2, G3
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1 Introduction

Payment and settlement systems are vital to the smooth functioning of any advanced econ-
omy. They are used to settle trades in foreign exchange, equities, bonds and money market
instruments. Consumers rely on them to make house purchases, receive salaries and bene�ts,
and pay for goods and services. We investigate how settlement banks in CHAPS, the United
Kingdom�s large-value payment system, react to outages experienced by another CHAPS
settlement bank.1 In RTGS systems like CHAPS, there is a risk that settlement banks con-
tinue to make payments to a bank that is able to receive but unable to make payments. The
bank experiencing operational problems thereby involuntarily absorbs liquidity: it becomes a
�liquidity sink�. This liquidity is not available any more to execute payments between other,
healthy settlement banks. Thus, if banks do not su¢ ciently monitor their outgoing payments,
operational risk at one bank is a source of systemic risk.

We �rst build a game-theoretic model in which a bank�s decision to make payments
depends on whether another bank experiences operational problems, and on the time of the
day at which the problems arise. In the empirical part, we estimate these reactions to an
operational outage using data from CHAPS. Our theory predicts that banks stop paying to
a stricken bank early in the day, when they are still uncertain about their payment �ows.
When this uncertainty has been resolved, healthy banks make payments even to stricken
banks. Both results are supported by our empirical evidence. We show that this behaviour
prevents spill-overs of the operational problem to healthy banks: payment values between
healthy banks remain una¤ected.

We hope to contribute to the existing literature in two respects. First, to our knowledge,
this is the �rst paper to analyse how banks react to operational outages changes during
the day. Second, we apply a more rigorous econometric approach than previous studies to
analyse the frequency with which payments are made, following Engle and Russel (1998).
The method we employ should be well suited to the analysis of high-frequency, irregularly
spaced transaction level data. In particular, we do not have to aggregate data in arbitrary
intervals. We can rely on non-parametric methods that provide a thorough picture of changes
in payment �ows before, during and after outages.

The paper is organized as follows. Section 2 provides a brief overview of related literature.
Section 3 presents the theoretical model; section 4 the empirical results. Section 5 concludes

1Settlement banks are direct members of the payment system and settle payments on behalf of their
clients (consumers, corporates and banks without direct membership). In the following, we will use the term
settlement bank and bank interchangeably.
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2 Related literature

Game-theoretic models of behaviour in large-value payment systems (such as CHAPS) predict
that the timing of payments in real-time gross settlement systems is the result of banks
trading o¤ delay costs and liquidity costs. The argument runs as follows. Intraday liquidity
can be drawn from two sources: (1) from the central bank (the settlement agent in CHAPS)
against collateral; (2) from incoming payments. In the �rst case, the cost of liquidity is the
opportunity cost of having to hold (and transfer) securities eligible as collateral. In the second
case, banks may not receive su¢ cient payments in time to execute their payment instructions
promptly; delay, however, could be expensive when contractual obligations or market practice
are violated. As banks seek to minimize the cost associated with sending payments, their
choice determines the distribution of payments throughout the day.

The starting point of our theoretical model is Bech and Garratt (2003). In their model,
high liquidity costs encourage banks to delay payments, awaiting the receipt of incoming
payments to fund their out�ows. We retain their assumption that there are two banks that
pay each other but increase the number of periods in which settlement banks can make
payments to each other to three (morning, afternoon, and evening) to be able to describe
the incentive to delay payments in the morning and the afternoon. To be able to analyse
why they react di¤erently to shocks in the morning and the afternoon, we further extend
their analysis: we allow operational shocks to occur in each period; that banks do not know
all their payment instructions at the beginning of the day; and we distinguish two types of
payment instructions, �normal�and �urgent�ones.

Angelini (1998) considers the behavior of banks with both liquidity and delay costs in
a RTGS system. In a model with two banks, who regard their incoming payments as ex-
ogenous, he shows that banks will delay payments somewhat, balancing delay costs and the
costs of a daylight overdraft. Mills and Nesmith (2008) and Kahn et al (2003) consider the
e¤ect of settlement risks2 on timing decisions. They illustrate another rationale for delays:
uncertainty about whether the other participants might either default or delay can prompt
the participants to delay their payments to obtain a better forecast of the cost of funding their
own out�ows. Mills and Nesmith (2008)�s model is closely related but di¤ers in many details.
First, their assumptions about the costs of obtaining intraday credit from the central bank
are appropriate to a priced intraday credit regime but not to systems in which the central
bank provides collateralised intraday credit for free, such as CHAPS. As our data refers to
CHAPS, we opted for the latter speci�cation, and chose to explicitly model banks�collateral
postings. Second, their model only contains one operational shock; given that our aim is to
see how a bank�s response depends on the time at which the shock occurs, we need at least

2Here, settlement risk refers to the risk that a payment instruction that a client sends to a bank is not
executed.

2



two shocks. (One in the morning, the other in the afternoon - the evening shock is needed to
provide banks with an incentive to pay in the afternoon rather than wait for the evening.)

In contrast to Mills and Nesmith (2008), we also need two payment instructions, which
di¤er in their urgency, to explain why a stricken bank�s response di¤ers. Willison (2005) and
Martin and McAndrews (2008) also investigate the role that urgent payments play for banks�
decision-making behaviour. Their focus is, however, on a di¤erent question (how liquidity-
saving mechanisms a¤ect settlement); and their models have only two periods, which makes
them unsuitable for our task.

A few, so far mostly descriptive empirical papers analyse payments data in normal and
stressed environments. McAndrews and Rajan (2000) document the payment and value
timing distribution of the Fedwire Funds Service3 using data aggregated within ten minutes
intervals. Becher et al (2007) carry out a similar descriptive analysis on CHAPS Sterling.
McAndrews and Potter (2002) estimate the average bank payments reaction function in
Fedwire following the events of September 11th, using a panel �xed e¤ect estimator on minute-
by-minute data. Armentier et al (2007) evaluate the relationship between liquidity costs
(proxied by payments values and volumes) and the timing distribution of Fedwire Funds
transfers using hourly data.

3 Model

The model covers payments behaviour on a single day. Two banks decide at the start of
the day how much liquidity to borrow from the central bank. In the subsequent periods,
they decide whether to delay the execution of their payment instruction(s). Whether delay is
attractive depends on how much liquidity each bank has available, on its opponent�s strategy,
and on whether operational shocks have hit one or both banks. The following section for-
malises the setup. We then provide some intuition for the trade-o¤s that banks face. Section
3.3 guides the reader through our results. The proofs are discussed in the appendix.

3.1 Setup

Two banks i = 1; 2 interact in four periods t = 1; 2; 3; 4. In the �rst, they simultaneously
decide on their collateral postings Ci 2 f0; 1; 2g at cost Ci and receive the instruction to
execute a normal payment of value 1 to their opponent. Banks incur the one-o¤ fee Ci
independently of how long they need the liquidity.4 Collateral posting decisions remain

3The United States�large value RTGS payment system.
4Virtually without exception banks post all collateral for the entire day before CHAPS opens, suggesting

that the cost of intraday credit in CHAPS is independent of its duration.
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private information. Three periods in which payments can be made follow. In each period,
each bank can be hit by an operational shock sti 2 f0; 1g, where t 2 fM;A;Eg indexes the
periods, with probability "i. If sti = 1, the bank is unable to make payments in this period, but
able to receive them.5 Shocks are publicly observable6 and independently distributed across
periods and banks. If sti = 0, bank i can execute all payment instructions it has received if
it has su¢ cient liquidity at the beginning of this period. That is, there is no possibility to
net payments within a period. As in Bech and Garrat (2003), this assumption is made to
re�ect the key characteristic of any real-time gross settlement systems, that is, that payments
cannot be netted.

At the start of the day, each bank obtains one payment instruction of value 1. In the
second period, the afternoon, each bank may obtain an additional instruction of value 1 with
probability vi. In contrast to the morning instruction, this one is urgent, and delay to the
evening costs d > . In the third period, the evening, no further instructions arrive. In the
evening, each bank can attempt to raise additional liquidity at cost  to settle any outstanding
instructions (unless it is hit by an operational shock). This attempt, however, fails with some
probability. (Transferring collateral into the payment system can take several hours when
it is not held in the same securities settlement system. Uncollateralised interbank overnight
loans may not be granted.) For simplicity, we set this probability to 1=2. Banks incur a cost
of fn >  (for normal instructions) and fu > ; d (for urgent instructions) for any outstanding
payment instruction that is not executed at all.7 Each bank is trying to minimise the total
costs arising from posting collateral and delaying / failing to execute payment instructions.
We neglect any costs of having to re�nance a negative balance overnight, and bene�ts from
lending out a surplus, assuming that these costs are small compared to those of technical
default.

3.2 Trade-o¤s and intuition for main results.

At the start of the day, each bank has to decide how much liquidity it borrows from the
central bank to settle its payments. We endogenise this decision; however, to understand the
main trade-o¤s, it is useful to assume that this decision has been made, and investigate the
bank�s payment behaviour in the morning, the afternoon, and the evening.

� Suppose �rst that the bank has posted two units of collateral in the morning. Then it
5Notice that the receipt of payments is always possible unless the central bank�s payment system breaks

down. We do not consider this type of operational outage. Instead, we look at bank-speci�c shocks.
6In CHAPS, settlement banks are required to report operational problems within 15 [CHECK] minutes of

the start of the outage.
7By convention, fu includes d: That is, if an urgent payment instruction is not executed, the cost is fu,

not fu + d.
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has no reason to delay: the expense for the collateral has been incurred, and liquidity
su¢ ces to make both payments. The bank might as well use it to make the payments
to avoid the risk that it will not be able to do so in a later period, given that its systems
may be hit by an operational shock. Thus, the risk of operational shocks, together with
the cost of technical default fn and fu, means that it is, in expectation, costly to delay
even normal payment instructions, and adds to the delay cost of the urgent payment
instruction (d).

� Now suppose that the bank decided to post one unit of collateral. The incentive to
execute payment instructions quickly remains. But if it executes the normal payment
instruction in the morning, it may not have any liquidity left to execute the urgent
payment instruction immediately in the afternoon. Hence, if the arrival of the urgent
payment instruction in the afternoon is su¢ ciently likely (vi large), or its cost of delay
high (d large) relative to the risk of operational failure "i, then the bank will prefer to
save the liquidity for the afternoon if it does not anticipate to receive a payment from
its opponent in the morning. If, in contrast, it expects to receive such a payment in
the morning, it can use this liquidity in the afternoon to execute the urgent payment
instruction. In this case, there is no bene�t from delaying the normal payment.

Thus, optimal payments behaviour when the bank posts one unit of liquidity depends
on its opponent�s behaviour. Of most interest is the case in which both banks post
one unit of collateral, and in which the delay cost d exceeds a threshold dL;i. Then
there may be two equilibria: one in which no bank pays in the morning, and one
in which both pay. In either case, both banks have su¢ cient liquidity to execute an
urgent payment instruction in the afternoon. Payo¤s are lower in the �rst equilibrium
because any delay increases the risk that payments may not be executed at all because
of operational shocks.

� If the bank decides to post no collateral, it fully relies on incoming liquidity to make its
payments, and / or on a successful attempt to raise liquidity in the evening. Clearly, this
is only optimal when costs of liquidity are very high, operational shocks unlikely, the
delay of urgent instructions inexpensive, and the costs of failure to execute payments
low.

It is interesting to note that if the cost of delaying the urgent payment is high (d > dL;i),
then the decision between posting one or two units of collateral does not depend on d. This
is because independently of opponent play, the bank will always prefer to ensure that it has
su¢ cient collateral available to execute the urgent instruction immediately. For su¢ ciently
high costs of collateral , the bank will only post one unit. In contrast, the decision between
posting zero or one, and between posting zero or two units of collateral depends on d. For
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su¢ ciently high delay costs d, posting one or two units is preferred. Taken together, these
features imply that for su¢ ciently high delay costs, and high costs of collateral, both banks
post one unit of collateral in all equilibria.

The following section presents the setup and the main result more formally. Readers
less interested in the game-theoretic modelling are invited to jump straight to the empirical
results in section 4.

3.3 Equilibrium

The game is a �nite two-player game. We are only looking for pure-strategy equilibria. The
solution is via backwards induction. This section �rst considers equilibrium play starting from
the afternoon period, and then moves backwards to the morning period, and the collateral
posting decision. Let ptn;i 2 f0; 1g be the number of normal payment instructions player i
executes in period t, and correspondingly ptu;i 2 f0; 1g for the urgent payment instructions.
pti = ptn;i + p

t
u;i is the total number of payment instructions player i executes in t. Let

lti denote the available liquidity at the beginning of period t, that is, before any period-t
payments are made or received. �i 2 f0; 1g denotes whether player i receives an urgent
payment instruction. The intra-period timing is as follows for both players i 2 f1; 2g: i
receives a payment instruction (not in period E); i learns whether he and / or his opponent
is hit by an operational shock lasting for the entire period; (in period E only: i decides
whether to attempt to raise additional liquidity); if i is healthy, he decides how many payment
instructions to submit, subject to having su¢ cient liquidity available; i�s cash account is
debited with outgoing payments; i�s cash account is credited with incoming payments.

Depending on the parameter values, di¤erent equilibria exist. Indeed, for a given set
of parameter values, there may be multiple equilibria. We focus here on a speci�c set of
parameter values:

1. The opportunity costs a settlement bank incurs when investing in (low-yielding) col-
lateral and submitting it to the central bank are su¢ ciently high to discourage the
settlement bank to post enough liquidity that would make it independent of any in-
coming payments with certainty. Formally  must exceed for both players i a threshold
L;i (Cj) whose value depends on the collateral Cj that the opponent j posts in the �rst
period of the game. L;i (Cj) is de�ned in lemma 4 in the appendix.

2. The delay costs of the urgent transaction are assumed to be su¢ ciently high to discour-
age the bank from not posting any liquidity at all. Formally d must exceed a threshold
dL;i (Cj) for both players i whose value depends again on Cj. dL;i (Cj) is de�ned in
de�nition 1 at the start of the appendix.
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For these ranges of  and d, there exist two equilibria, and players �nd it optimal to
post exactly one unit of collateral at the beginning of the day in both of them. Equilibrium
behaviour in the afternoon and the evening is identical in both equilibria: In the afternoon, all
available liquidity is used to execute outstanding payment instructions unless the player is hit
by an operational shock. Normal instructions are only executed after urgent instructions have
been executed. In the evening, all remaining instructions are executed subject to available
liquidity unless the player is hit by an operational shock. If liquidity is insu¢ cient, and
sEi = 0, an attempt is made to raise additional liquidity.

But equilibria di¤er in their payments behaviour in the morning. In the �rst equilibrium,
E1, neither bank makes a payment in the morning. In the second equilibrium, E2, banks
pay each other in the morning unless they, or their opponent, su¤er from an operational
problem. Behaviour in E2 ensures that whether or not a bank or its opponent experiences
an operational outage, it has su¢ cient liquidity available at the start of the second period
to execute the urgent payment instruction immediately. Proposition 1 formally states the
equilibrium.

Proposition 1 If, for both players i,  > L;i (1) and d > dL;i (1), then there exist two
symmetric equilibria. In both these equilibria, C1 = C2 = 1, payments in the afternoon and
the evening are given by

pAu;i =
�
1� sAi

�
min

�
�i; l

A
i

	
pAn;i =

�
1� sAi

�
min

�
1� pMn;i; lAi � pAu;i

	
pEu;i =

8<:
�
1� sEi

� �
�i � pAu;i

� �
if lEi � �i � pAu;i,
or lEi < �i � pAu;i and i raised additional liquidity

0 if lEi < �i � pAu;i and i could not raise additional liquidity

pEn;i =

8>>>>><>>>>>:
�
1� sEi

� �
1� pMn;i � pAn;i

� 8<:
if lEi � pEu;i � 1� pMn;i � pAn;i;
or lEi � pEu;i < 1� pMn;i � pAn;i
and i raised additional liquidity

0

�
if lEi � pEu;i < 1� pMn;i � pAn;i
and i could not raise additional liquidity

and i�s available liquidity is given by

lAi = Ci � pMi + pMj
lEi = lAi � pAi + pAj

In the morning,

� In equilibrium E1, pM1 = pM2 = 0.
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� In equilibrium E2,

pM1 =
�
1� sMi

�
�
�
1 if pMj = 1

0 if pMj = 0

If, for all Cj,  > L;i (Cj) and d > dL;i (Cj), then only these equilibria exist.

The proof is in the appendix. We do not investigate in this paper how banks could
coordinate on equilibrium E2.8 In CHAPS, there are additional incentives to coordinate on
E2: Settlement banks are subject to throughput targets, requiring each settlement bank to
submit on average 50% of the value of all payments by noon.9 A committee consisting of the
CHAPS settlement banks and the Bank of England in its role as overseer of payment systems
monitors how well these targets are met. Empirically, settlement banks indeed transmit about
half of their payments (in terms of value) in the morning. E2 predicts exactly that. If there
is an operational shock, banks tend to stop sending to the stricken bank in the morning (see
the estimation results in the following section), while they react much less to such a shock in
the afternoon. Again, this is in line with E2�s predictions.

Equilibrium E2 is e¢ cient among symmetric equilibria: given that each bank posts one
unit of liquidity, payments are settled as early as possible, minimising expected costs. The
underlying reason is that delay costs are higher than the cost of liquidity. Admittedly, this
basic prediction has already been made in Bech and Garrat (2003). The extensions made in
our model allow us to derive a more precise prediction: that even when delay costs are high,
banks will stop sending payments to a stricken bank in the morning, but not in the afternoon.

A bank stops sending payments to a stricken bank when it is unsure whether it has
su¢ cient liquidity available to execute all remaining payments. This is, in principle, good
news for systemic risk. Whether it is su¢ cient to contain the e¤ects of the shock is an
empirical question. Our empirical results, presented in the following section, show that
indeed, healthy banks�payment behaviour to a stricken bank is su¢ cient to leave payment
values exchanged between healthy banks una¤ected by the stricken bank�s operational shock.

4 Estimation

This part of the paper is organized as follows. Section 4.1 provides a brief description of the
UK large-value payment system; section 4.2 describes the data; in section 4.3, we analyse the
impact of an operational failure on payment �ows to stricken banks.

8There are a few theoretical arguments against the choice of a Pareto-dominated equilibrium such as E1:
That the dominant equilibrium should be the focal point; or that players �agree�to play it in a pre-play round
of communication.

9See section 4.1 for more on CHAPS.

8



4.1 A Description of CHAPS Sterling

CHAPS is the United Kingdom�s high-value payment system, providing real-time gross set-
tlement (RTGS) of credit transfers. CHAPS started operating in 1984 as a nationwide,
electronic inter-bank system for sending irrevocable, guaranteed and unconditional sterling
credit transfers from one settlement member to another for same-day value. In April 1996, it
was developed into an RTGS system. It now handles nearly all large-value same-day sterling
payments between banks, other than those relating speci�cally to the settlement of securities
transactions.

The system, which operates on business days between 06:00 and 16:00, has �fteen banks
as direct members. In 2006 average daily volumes and values amounted to 131,000 payments
and £ 231bn. Payment �ows are highly concentrated. The 5 biggest banks account for over
80 per cent of both volume and value. A Memorandum of Understanding between the Bank
of England (BoE) and CHAPSco sets out the respective roles and responsibilities of the BoE,
CHAPSCo and the members in the operation of the CHAPS services. The BoE operational
responsibilities include amongst others: ensure that settlement facilities are available for
99.95% of the operating day on average over the course of the month; settle transactions within
30 seconds; process a peak day�s volumes within 4 hours; inform CHAPSCo of operational
problems within 5 minutes of their identi�cation; provide at least one month�s notice of
planned technical changes that may a¤ect the system functioning. Members are required to
inform CHAPS (and subsequently other members) of operational problems within 15 minutes
of their identi�cation. Further, to improve the e¢ ciency of liquidity usage by preventing any
one institution from hoarding liquidity, members are required to comply with the following
guidelines, measured over a calendar month. An average of 50% of value should be throughput
by 12:00 and 75% by 14:30. The other role of the BoE is to supply collateralized intraday
liquidity to CHAPS members. Collateralised intraday credit and incoming payments are the
main sources of liquidity in CHAPS sterling; in addition, settlement banks can also use their
reserve account balance to �nance payment out�ows.

4.2 Data

The focus is on the payment activity of the �ve major banks which represents 80 per cent
of the activity in value. The dataset covers 8 days in 2007 when at least one of these banks
was unable to send any payment during a certain time interval. Detailed information on the
timing of outages and the identity of stricken banks was provided by APACS (the UK trade
association for payments). Table 1 reports for each outage, the date, start time and end time.
For con�dentiality reasons the identity of the bank experiencing the outage is not given. Note
that the eight outages di¤er along several dimensions: start time, length and duration. This
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will allow to let outage impacts to vary along these dimensions and make this exercise more
informative.

A second source of information is the CHAPS database that contains individual transac-
tion data. For each payment one observes the transaction date and time, the payment value,
the payer and payee.

The time between transactions is the reciprocal of the transaction rate, which is itself a
proxy for volume. We are, however, interested in payment values, as funding and delay costs
are presumably proportional to the value of a payment. (Our theoretical model abstracted
from the di¤erence between volume and value for simplicity.) Following Gourieroux et al
(1998) value-weighted payments durations are calculated as follows. Assume that we observe
on every day a sequence of payments, which are indexed by n; n = 1; :::::; Nm and the associ-
ated payment times �n (m) : The duration between the successive ticks n� 1 and n is simply
the time that expires between two payment times,

�n (m) = �n (m)� �n�1 (m) (1)

The weighted durations instead represent the time required by a bank to make a �xed
value � of payments. Let �n (m) denote the value paid at time dn (m) : By summing up
values of individual payments for a count of Nt (m) payments, the cumulated payments value
is obtained

Vt (m) =

Nt(m)X
n=1

�n (m) (2)

i.e. the volume paid on day m by t: The value duration is de�ned

� val (t; �) = inf (� : Vt+� (m) > Vt (m) + �) (3)

as the time necessary to observe an increment � of cumulated value. � is set to 1 billion
pound10.

Before durations are calculated the values of simultaneous payments are summed (by
bank) and then outgoing and incoming payment values at each point in time are matched by
payer. Overnight durations are ignored. After deleting these observations there are 466348
durations (observations). Table 2 reports descriptive statistics. For outgoing durations the
average time between successive events is 1355.7 seconds (or about 23 minutes). The minimum
duration is 1 second and the maximum duration 12259 seconds (or about 3 hours 40 minutes).
Figure 1 is a plot of the density for the waiting times showing in more details the events
distribution. Durations above 1 hour occur rarely.

10This threshold is selected because it belongs to the top one percentile.
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Figure 2 contains a plot of the expected time interval conditioned on the time of day that
the duration begins.11 The x-axis shows the time of the day. The y-axis shows the estimated
time it takes for a bank to receive additional payments worth £ 1bn. For example, at 8:30
(corresponding to 30,000 seconds after the start of the day), a bank expects to receive an
additional £ 1bn within the next 30 minutes (corresponding to 1,800 seconds). There is a
rapid increase in activity immediately after the opening and a gradual increase thereafter
(with two small peaks at the throughput deadlines 12:00 (43,000 seconds) and 14:30 (52,000
seconds).

Unlike other �nancial data (e.g. transaction data), long durations, and likewise short
durations, do not occur in clusters. The absence of duration clustering is also visible in the
autocorrelation function (ACF) and partial ACF plotted in Figure 3. Indeed, autocorrelation
shows up in a slowly decreasing autocorrelation function that starts at a high value and the
partial autocorrelations are small in magnitude and not signi�cant statistically.

4.3 The Impact of Outages on Payment Flows to Stricken Banks

In this section, we estimate average di¤erences in payment �ows to stricken banks between
days when they experience an outage and days when they do not experience any outage. In
particular, we estimate reactions of the value-weighted duration of incoming payments: that
is, the reaction of the time it takes the stricken bank to receive a certain amount of liquidity
from the other banks. The higher the value-weighted duration, the less liquidity the bank
receives. We also analyse how banks�reaction changed in the second half of 2007, which we
associate with times of greater uncertainty in the market.

4.3.1 Empirical Speci�cations

Assume a bank experienced an outage started at time Ts and ended at time Te on day d:
Given the absence of duration clustering in our data we propose the following (non-dynamic)
semi-parametric speci�cation is proposed to assess changes in the intensity of a bank�s in-
coming payment �ow before, during and after outages it experienced. For stock market data
researchers have observed a non-linearity in durations due the sharp decline in trading at
lunch time. Payments activity in Chaps is not interrupted so that this non-linearity does not

11The expectation is calculated using Friedman�s super smoother. This is running lines smoother which
chooses between three spans for the lines. The best of the three smoothers is chosen by cross-validation for
each prediction. The best spans are then smoothed by a running lines smoother and the �nal prediction
chosen by linear interpolation.
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show up in our data.12

Ibi = c+Outagebd � before+Outagebd � during +Outagebd � after + f1 (ti) + kb (4)

where Ibi is the standardized value-weighted duration associated with the i
th incoming pay-

ments to bank b from any other banks. Ibi is standardized by dividing the actual duration for
bank b at transaction i on day d by the average duration for bank b on that day. This way the
mean of Ibi is 1 for all banks and the estimates can be interpreted as percentage deviations
from the mean.

Outage is a dummy taking value one if bank b experiences an outage on day d; c is a
constant; during (after=before) is a dummy that takes value one if Ts � ti � Te (ti �
Te=ti � Ts); kb is a set of bank �xed e¤ects. f1 (ti) is an unspeci�ed function to be estimated
that controls for time-speci�c e¤ects, and ti is the time at which duration i starts. Hence,
this speci�cation exploits variations within bank and across days. The speci�cation allows
us to assess the impact of the average outage.

The next speci�cation is used to analyse intra-outage dynamics

Ibi = c+ f2 (Nid) + f3 (ti) + b (5)

where Nid = ti�Ts is the number of seconds elapsed since an outage started for intra-outage
transactions (i.e. if ti < Te) and zero otherwise. Hence, f2 (Nid) measures how the incoming
duration to the stricken bank depends on the �age�of the outage, that is, the time that has
expired since the outage started. f3 (ti) is again included to control for time-of-the-day e¤ects.

Last, the e¤ect of outages is allowed to vary depending on the time of the day outages
start

Ibi = c+Outagebd�before+OdMorningi+OdAfternooni+Outagebd�after+f4 (ti)+kb (6)

where OdMorning (OdAfternoon) is a dummy that takes value one if bank b experienced
an outage at time ti and ti is a pre-12 pm (post 12pm) time.

The control days are taken as days when no bank experiences an outage. We take the
closest previous working day as a control day for an outage day: in�ows to a bank on a day
and hours when it experiences an outage is compared to its in�ow at the same hours on the
closest previous working day when no bank experiences an outage.

12Engle and Russell (1998) develop a model of intertemporally correlated event arrival times applied to
IBM transaction data.
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4.3.2 Results

Table 3 column (1) reports the results of estimating equation (4). The coe¢ cient on the
interaction term Outagebd � during is statistically signi�cant and suggests that the time it
takes for a stricken bank to receive an additional billion pound of customer payments from
other banks rises by about 60 per cent (0.596*100) during an outage.

Figure 4 plots the intra-outage dynamic, that is, function f2 in equation (5), Ibi = c +

f2 (Nid)+ f3 (ti)+kb. The duration rises by up to 100% during an average outage. This peak
is reached about 2500 seconds (or 40 minutes) after the outage starts and declines slightly
thereafter to stabilize at 60% until the outage ends. This non-linearity may be explained
by the trade-o¤ banks face between paying immediately and incurring a liquidity cost (e.g.
by having to raise additional liquidity in the interbank market) and delay costs. But the
non-linearity is also to some extent driven by the fact that our duration measure is a forward
measure of activity intensity. In other words, the increase in activity observed intra-outage
is partly driven by the post-outage recovery. Indeed, recall the duration at transaction i is
the time it takes from transaction i for a bank to cumulate a billion in payments activity.
These results are qualitatively similar when we consider in isolation the longest outage (not
reported).

Table 3 column (2) reports an estimation of equation (6). The coe¢ cients on OdMorningi
and OdAfternooni are both statistically signi�cant at the 1 per cent con�dence level: The
interpretation of the coe¢ cient on OdMorningi is that the duration of payment in�ows to
a stricken bank rises by about 150% (1.516*100) during outages occurring before 12 pm. It
rises by only 20% (0.206*100) during outages occurring in the afternoon. This result was to
be expected as banks have more leeway to delay payments early in the day than closer to the
end of the trading day. The di¤erence between morning and afternoon outages e¤ects falls
when we exclude the two longest and two shortest outages (this makes morning and afternoon
outages more comparable, column 3), but the increase in the duration is still about twice as
large in the morning. (The di¤erence remains statistically signi�cant). We then show that
our results are robust to the inclusion of outages occurring on particular calendar days.

Table 4 column (1) reports estimates of day of week e¤ects on the logarithm of the CHAPS
daily payment activity measured in billion pounds. The results indicate that di¤erences in
payments activity across days of the week are not large enough to account for the estimated
60% decline in payments sent to stricken banks during operational outages. The results are
robust to adding additional calendar e¤ects (column 2). However, one calendar e¤ect that
appears su¢ ciently large is a 57% decline in activity on US holidays. Given that two outages
in our data have occurred on a US holiday (September 3rd and October 8th) we test the
robustness of our estimates to excluding theses days and we also exclude a third outage that
occurred during the second half of 2007 (September 4th). The result is reported in Table
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3 column (4). The conclusions continue to hold in the reduced sample: the coe¢ cient on
OdMorningi is 1.242 and the coe¢ cient on OdAfternooni 0.163.

Column (5) compares the e¤ect of the shortest two outages that occurred during the
credit crunch (outages 7 and 8) to the two shortest outages pre-credit crunch (outages 2 and
3). The result indicates that during outages shorter than 20 minutes banks hoard payments
during the liquidity crunch (post August 9th 2007) with durations 50% longer (0.516*100)
but not in tranquil times. However this result as to be taken with caution because two of the
outages that occurred during the crisis are US holidays when payment activity is about 60%
lower than other days.

Finally, column (6) reports an estimate of the e¤ect of outages on payment activity be-
tween healthy banks. In order to derive this result incoming durations of healthy banks were
calculated excluding payments from and to a stricken bank. The result indicates that outages
do not produce negative externalities. The coe¢ cient on Outagebd � during is small (0.057)
and not signi�cant statistically at conventional levels, implying that activity among healthy
banks is unaltered during an outage.

5 Conclusion

The evidence in this paper indicates that banks react to large operational outages by ceasing
to make payments to stricken banks. In line with the prediction of our model, the reaction to
outages is stronger in the morning than to those in the afternoon. The peak of the reduction
of �ows to the stricken bank occurs no later than one hour into the outage. Presumably delay
costs become too large afterwards, encouraging banks to make some payments to the stricken
bank. The fact that banks initially stop making payments to stricken banks reduces systemic
risk: The stricken bank does not become a liquidity sink, and liquidity remains available
to settle outstanding payments between healthy banks. Indeed, we show that the value of
payment �ows between healthy banks remains virtually unchanged during an outage.
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Figure 1: Density of incoming payments durations. Durations are de�ned as
the time it takes for a bank to receive additional payments worth £ 1bn.
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Figure 2: Daily pattern of incoming durations.
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Figure 4: Intra-outage dynamics. This �gure reports how incoming durations
to the stricken bank evolve from the start of the outage
(i.e., a non-parametric estimate of function f2 in equation 5)
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Outages Date Start time End time
Start time

in seconds

End time

in seconds
Duration

Control

Days

1 March 19th 07:00 08:10 25200 29400 1:10 March 16th

2 April 27th 15:05 15:50 54300 57000 0:45 April 26th

3 May 29th 12:33 12:51 45180 46260 0:18 May 25th

4 June 1st 12:24 13:17 44640 47820 0:53 May 31th

5 June 11th 06:00 07:40 21600 27600 1:40 June 8th

6 September 3rd 06:05 08:30 21900 30600 2:25 August 31st

7 September 4th 13:14 13:30 47640 48600 0:16 August 31th

8 October 8th 06:59 07:35 25140 27300 0:36 October 5th

Table 1: Outages in 2007

Table 2. Descriptive statistics
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Dependent variable: Incoming duration  1    2  3a    4b   5c    6d    7e   

  Equation (4)  

Equation (5) 
Morning 
versus 

Afternoon   

Excludes 2 
longest 2 
shortest 
outages   

Excluded 
crisis outages  

Outages 
shorter than 
20 minutes   

Crisis 
Outages   

Externalities to 
healthy banks?   

 Before Outage    0.058    0.068    0.076    0.071    0.025    0.065    -0.161*   
   (0.004)    (0.004)    (0.004)    (0.004)    (0.004)    (0.008)    (0.124)   
 During Outage    0.596              0.057*   
   (0.008)              (0.124)   
 After Outage    -0.08    -0.089    -0.12    -0.115    -0.07    -0.055    -0.074*   
   (0.003)    (0.003)    (0.004)    (0.004)    (0.006)    (0.005)    (0.124)   
 During Morning Outage      1.516    0.476    1.242      2.177     
     (0.015)    (0.02)    (0.018)      (0.025)     
 During Afternoon Outage      0.206    0.206    0.163      0.450     
     (0.01)    (0.01)    (0.011)      (0.034)     
 During Crisis Outage            0.516       
           (0.028)       
 During non-Crisis Outage            -0.025       
           (0.012)       
 Time effects    x    x    x    x    x    x    x   
 Bank fixed effects    x    x    x    x    x    x    x   
 No. Observations    149811    149811    149811    105505    73436    44306    548492   
 R-squared    0.48    0.5    0.47    0.49    0.5    0.52    0.38   
 F-statistic p-value    0    0    0    0    0    0    0   
 

Table 3: Banks' payments behaviour. 
 

We report alternative estimates of the following regression: Ii
b  c  Outagebd ∗ before  Outagebd ∗ during  Outagebd ∗ after  f1t i   kb  , where  Ii

b
  is 

the standardized value-weighted duration associated with the  ith   incoming payments to bank  b   from any other banks.  Outagebd ∗ before,    

Outagebd ∗ during,Outagebd ∗ after  are dummy variables taking value 1 on days when bank  b   experiences an outage.  f1t i    is a time-of-day-effect 

function to be estimated, so  t i   is the time at which the  ith   duration starts.  kb   is a set of bank fixed effects and  c   a constant. The various specifications 
allow or not for specific morning and afternoon effects during outages. All coefficients are significant at the 1% level, except estimates marked by (*).  
(a) Ignores the two longest and the two shortest outages. (b) Ignoring outages occurring post August 9th (i.e. post crisis) (c) Compares outages 7 and 8 to outages 
2 and 3. (d) Only post August 9th outages i.e. crisis outages (e) Estimates on durations calculated on all payments except from and to a stricken bank. 



Table 4. Calendar E¤ects on Payments Activity

Dependent Variable: ln(Daily Payment Activity value billion £ ) (1) (2)

Tuesday -0.044
(0.03)

Wednesday -0.038
(0.03)

Thursday -0.006
(0.03)

Friday 0.059**
(0.03)

United Kingdom holidays [-1;+1] 0.073*
(0.039)

United States holidays [0] -0.575***
(0.032)

First week of month 0.002
(0.012)

Last week of month -0.009
(0.022)

First quarter 0.081
(0.065)

Second quarter 0.035
(0.06)

Third quarter 0.137
(0.107)

Fourth quarter -0.111***
(0.031)

R-Squared 0.055 0.38
Number of Observations 376 376

Note: (**), (***) denote signi�cance at the 5% and 1% level, respectively
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6 Appendix

6.1 Proof of the main proposition

The proof proceeds by backwards induction. Equilibrium play in the afternoon and evening
is proven in section 6.2. Lemma 1 shows that d > d00L;i (Cj) ensures that p

M
i = 1 only if

pMj = 1, implying that if Ci = Cj = 1, there is an equilibrium in which no player pays in the
morning (E1�), and another one in which payments are exchanged only if neither player is hit
by an operational shock (E2�). Lemma 3 shows that d > d0L;i (Cj) ensures Ci � 1. De�nition
1 de�nes dL;i (Cj):

De�nition 1 dL;i (Cj) = max
�
d0L;i (Cj) ; d

00
L;i (Cj)

	
.

Finally, Lemma 4 shows that  > L;i (C1) ensures Ci � 1. The non-existence of other
equilibria is simply given by assuming that the conditions hold for all opponent actions (all
Cj).13

The following sections guide the reader through the proofs.

6.2 Equilibrium play in the afternoon and evening

In the afternoon, each player knows all his outstanding payment instructions and his available
liquidity. There is no gain from hoarding liquidity but a positive cost because there is a risk
that i will be unable to make the delayed payment in the evening. Priority is always given
to the urgent payment because the cost of delay and the cost of technical default for the
urgent instruction are higher than for the normal instruction (d > 0 and fu > fn). Thus,
in the afternoon, all available liquidity is used to execute outstanding payment instructions
unless the player is hit by an operational shock. Normal instructions are only executed
after urgent instructions have been executed. In the evening, all remaining instructions
are executed subject to available liquidity unless the player is hit by an operational shock.
If liquidity is insu¢ cient, and sEi = 0, an attempt is made to raise additional liquidity.
Technical default - the failure to execute a payment on the day at which it is due - is,
by assumption, su¢ ciently expensive for i to always attempt to raise additional liquidity if
necessary. (Assuming that the attempt to raise additional liquidity succeeds with probability
1=2, this holds if �

�
1
2
f� +

1
2

�
> �f�, which is implied by � > �fn;�fu.).

13We have not investigated asymmetric equilibria. These may indeed exist. For su¢ ciently small
likelihoods of operational shocks, d00L;i (2) = d00L;i (1) ; d

0
L;i (2) > d0L;i (1), and L;i (2) = L;i (1). Thus,

dL;i (1) = max
�
d00L;i (1) ; d

0
L;i (1)

	
may rise when one player decides to post two units of collateral, reduc-

ing that player�s incentive to post any collateral at all. (See below for the notation.)
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6.3 Equilibrium play in the morning

6.3.1 Overview

The key result in this section is that if Ci = 1, then there is a threshold d00L;i (Cj) for the
delay cost of the urgent action above which i withholds payments to j in the morning if
j experiences an operational outage. (When Ci = 0, then pMi = 0 is the only possible
action, and when Ci = 2, then i has su¢ cient liquidity to execute even the urgent payment
transaction without having to rely on incoming liquidity, and executes in equilibrium each
transaction as it arrives.) The proof proceeds by explicitly computing the expected payo¤s of
the actions pMi 2 f0; 1g over all possible realisations of the random variables sti, and given the
opponent�s choice pMj , and the collateral posting choices made by both players. For example,
if Ci = 1,Cj = 0 and sMi = 0, then i�s expected payo¤ uMi

�
Ci; Cj; p

M
i ; p

M
j

�
from playing

pMi = 0 is

uMi (1; 0; 0; 0) = �" (1� ") (�vifn) + (1� ")2
�
�vi

�
1

2
fn +

1

2


��
+"2 (�fn � vifu) + " (1� ")

�
�vi

�
d+

1

2
fn +

1

2


��

To see this, notice that Cj = 0 implies pMj = 0. Then i�s available liquidity at the start
of period A is lAi = 1. Correspondingly, j�s liquidity at the start of A, l

A
j , is still zero, as j

neither made not received payments in the morning. Then j cannot make any payments in
the afternoon, so that i�s available liquidity is lEi = 1� pAi . Payo¤s depend on the realisation
of the random variables

�
sA1 ; s

A
2 ; s

E
1 ; s

E
2

�
: If sAi = 0 and sEi = 1, i can pay in the afternoon

but not in the evening. If he receives an urgent instruction in the afternoon (probability vi),
he executes it immediately, and fails to execute his normal payment in the evening. Hence,
i�s expected payo¤ is �vifn. Correspondingly, if sAi = 0, sEi = 0, then i�s expected payo¤ is
�vi

�
1
2
fn +

1
2

�
: if i is not hit by an operational outage in the evening, he attempts to raise

the missing liquidity, which succeeds with probability 1=2. If sAi = 1 and sEi = 1, then i�s
expected payo¤ is �fn�vifu. Finally, if sAi = 1, sEi = 0, then lEi = 1, and i uses this liquidity
either to settle the normal payment, or, if he also received an urgent payment instruction,
he incurs the delay cost for the urgent payment, and attempts to raise the missing liquidity
for the normal payment (fn < fu). Correspondingly, expected payo¤s can be derived for the
other cases; the keen reader is welcome to check them in the subsequent section.

d00L;i (Cj) is then determined by solving u
M
i (1; Cj; 0; 0) � uMi (1; Cj; 1; 0) = 0 for d. It is

given by de�nition 2:
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De�nition 2

d00L;i (Cj) =

(
d00L;i (1) + ( + fn)

1�"j
2�2"i�"j if Cj = 0

2"2i fn�vi(1�"i)(2"i+"j)(fu�fn)
vi(1�"i)(2�2"i�"j) if Cj 2 f1; 2g

Notice that d00L;i (1) > d
00
L;i (0). This is because there is an additional incentive to pay early

when Cj = 0: if i pays in the morning and j�s returns this liquidity in the afternoon, i might
be able to re-use this unit of liquidity in the evening.

It is instructive to have a closer look at d00L;i for the special case in which there is hardly
any risk of operational failure ("i; "j ! 0). Then

d00L;i (Cj)"i;"j!0 =

�
1
2
( + fn) if Cj = 0

0 if Cj 2 f1; 2g

Clearly, near-absence of operational shocks means that the incentive to make payments early
is (nearly) lost when the opponent j has posted some collateral: j will use this liquidity if
not in the morning, then in the afternoon period to make a payment; i can use this to make
a second payment in the evening. Thus, for all d � 0, i prefers to reserve the payment
for the (possible) urgent payment instruction. In contrast, when Cj = 0, there is a bene�t
from paying in the morning: the opponent can then use this liquidity in the afternoon, and
i can re-use it in the evening. If he receives an urgent payment instruction (probability
vi), i thus saves the need to attempt to raise additional collateral in the evening for the
remaining normal instruction (which, if successful, costs , whereas the cost of failure is fn).
If vid > vi

�
1
2
 + 1

2
fn
�
, these costs are dominated by the cost of delaying the urgent payment,

and i prefers to save his liquidity for the afternoon. Thus, d00L;i =
1
2
 + 1

2
fn if Cj = 0.

Lemma 1 If Ci = 1 and sMi = 0, i�s best reply in M is

pMi = pMn;i =
�
1� sMi

�
�
�
1 if pMj = 1, or if pMj = 0 and d � d00L;i (Cj)
0 if pMj = 0 and d > d00L;i (Cj)

Proof. Consider �rst the case that pMj = 1. If pMi = 1, then lAi = Ci � pMi + pMj = 1,
su¢ cient to execute the urgent transaction immediately should it arrive. Thus, there is no
bene�t from delaying the execution of the normal payment, but an expected cost, given that
i might su¤er an operational outage in the subsequent periods.

Now suppose that pMj = 0. From the de�nition of d00L;i (Cj), and because u
M
i (1; Cj; 1; 0)

falls faster in d than uMi (1; Cj; 0; 0), we have u
M
i (1; Cj; 0; 0) � uMi (1; Cj; 1; 0) > 0 if only if

d > d00L;i (Cj), implying that it is optimal for i to withhold the morning payment if and only
if d > d00L;i (Cj).
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6.3.2 Details

If sMi = 1, there is no decision for i to make: pMi = 0. The following sections therefore deal
with the case that sMi = 0 . Notice �rst that if Ci = 2, then pMi = 1 in any equilibrium.
Nevertheless, we also provide expected payo¤s for Ci = 2; we need them again to �nd out
how much collateral i chooses to post in the morning (section ???).

Expected payo¤s when i does not pay in the morning (pMi = 0) Recall the notation:
uMi

�
Ci; Cj; p

M
i ; p

M
j

�
is the expected payo¤of i in the morning, given sMi = 0. The expectation

is running over the realisations of afternoon and evening shocks,
�
sA1 ; s

A
2 ; s

E
1 ; s

E
2

�
.

Opponent does not pay in the morning (pMj = 0). Suppose �rst that Cj = 0. Then
pMj = 0 and

uMi (0; 0; 0; 0) =
1

2
(�fn � vifu) +

1

2
(� (1 + vi)  � vid) (7)

uMi (1; 0; 0; 0) = " (1� ") (�vifn) + (1� ")2
�
�vi

�
1

2
fn +

1

2


��
(8)

+"2 (�fn � vifu) + " (1� ")
�
�vi

�
d+

1

2
fn +

1

2


��
The expression for uMi (0; 0; 0; 0) is straightforward: No payments can be made until period
E, hence payo¤s only depend on whether additional liquidity can (second bracket) or cannot
be raised (�rst bracket). uMi (1; 0; 0; 0) has already been derived in the previous section.
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Suppose instead that Cj = 1, and that pMj = 0. Then

uMi (0; 1; 0; 0) = "i (�vifu � fn) + "j (1� "i)
�
1

2
(�vifu � fn)�

1

2
( + vi (d+ ))

�
(9)

+(1� "j) (1� "i)
�
�vi

�
d+

1

2
( + fn)

��
uMi (0; 2; 0; 0) = "i (�vifu � fn) + "j (1� "i)

�
1

2
(�vifu � fn)�

1

2
( + vi (d+ ))

�
(10)

+(1� "j) (1� "i)
��
�vi

�
d+

1

2
( + fn)

��
(1� vj) + (�vid) vj

�
uMi (1; 1; 0; 0) = uMi (1; 2; 0; 0) (11)

= "j

�
"2i (�fn � vifu) + "i (1� "i) vi

�
�d�

�
1
2
 + 1

2
fn
��

+"i (1� "i) (�vifn) + (1� "i)2
�
�1
2
vi ( + fn)

� �
+(1� "j)

�
"i (1� "i) (�vifn � vid) + "2i (�vifu � fn)

�
uMi (2; 1; 0; 0) = uMi (2; 2; 0; 0) (12)

= "2i (�fn � vifu)� vi"i (1� "i) d

The derivation of these expressions is exactly analogous.

� Consider uMi (0; 1; 0; 0) and uMi (0; 2; 0; 0). Because Cj � 1, j can choose to make a
payment in period A; but i has no liquidity available before the start of period E.
Then

lEi = Ci + p
M
j + p

A
j �

�
pMi + p

A
i

�
= min fCj; 1 + vjg

If sEi = 1, the payo¤ is �vifu � fn. If sEi = 0 and sAj = 1, then lEi = 0, and the payo¤
is 1

2
(�vifu � fn)+ 1

2
( + vi (d+ )). If sEi = 0 and s

A
j = 0, then l

E
i = min fCj; 1 + vjg,

and at least the urgent payment can be made using incoming liquidity, so that the
payo¤ is �vi

�
d+ 1

2
( + fn)

�
if (Cj = 1 or vj = 0), whereas the payo¤ is �vid if (vj = 1

and Cj = 2).

� Now consider the other payo¤s. We �rst consider the case sAj = 0, then sAj = 1.
If sAj = 0, then p

A
j = min fCj; 1 + vjg, so

lEi = Ci + p
M
j + p

A
j �

�
pMi + p

A
i

�
= Ci +min fCj; 1 + vjg � pAi

Given sAj = 0 (probability 1�"j), expected payo¤s depend on i�s shocks in the afternoon
and evening: If sAi = s

E
i = 0, p

A
i = min fCi; 1 + vig, so at least the urgent payment is

made in the afternoon, and i�s expected payo¤ is 0. If sAi = 0 and s
E
i = 1, then payo¤
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is �vifn because if vi = 0, normal payment is made in the afternoon. If sAi = 1 and
sEi = 0, then l

E
i = Ci + min fCj; 1 + vjg � 2, and i�s payo¤ is �vid. If sAi = sEi = 1,

then payo¤ is �vifu � fn.
If sAj = 1, then p

A
j = 0, and

lEi = Ci + p
M
j + p

A
j �

�
pMi + p

A
i

�
= Ci � pAi

If sAi = s
E
i = 1, then payo¤ is �fn � vifu. If sAi = 1 and sEi = 0, then lEi = Ci, and

expected payo¤ is �Ci � vid if Ci = 2 (because delay costs are only incurred if there
is an urgent payment instruction), and �Ci � vi

�
d+ 1

2
( + fn)

�
if Ci = 1 (because

then the urgent payment is made using existing liquidity). If sAi = 0 and s
E
i = 1, then

expected payo¤ is �Ci if Ci = 2, and �Ci �vifn if Ci = 1 (because then only the
urgent payment is made in the afternoon). If sAi = sEi = 0, then expected payo¤ is
�Ci if Ci = 2, and �1

2
vi ( + fn) if Ci = 1.

Finally, if Ci = 2 and pMj = 0, payments are not delayed (independently of vi), so no delay
costs are incurred if sAi = 0.

Opponent pays in the morning (pMj = 1). Suppose �rst that Ci = 0. For Cj � 1, if
pMj = 1, then lAi = Ci + p

M
j � pMi = 1 and

lEi = Ci+p
M
j +p

A
j �

�
pMi + p

A
i

�
= pMj +p

A
j �pAi = 1+pAj �pAi = 1+min fCj � 1; vjg�pAi

and

uMi (0; 1; 0; 1) = (1� "j)
�
(1� "i)2

�
�vi 12 ( + fn)

�
+ "i (1� "i)

�
�vi

�
d+ 1

2
( + fn)

��
+"i (1� "i) (�vifn) + "2i (�vifu � fn)

�
(13)

+"j

�
(1� "i)2

�
�vi 12 ( + fn)

�
+ "i (1� "i) (�vifn)

+"i (1� "i)
�
�vi

�
d+ 1

2
( + fn)

��
+ "2i (�vifu � fn)

�

uMi (0; 2; 0; 1) = (1� "j)

0@ (1� "i)2
�
�vi 12 ( + fn) (1� vj)

�
+"i (1� "i)

�
�vidvj � vi

�
d+ 1

2
( + fn)

�
(1� vj)

�
+"i (1� "i) (�vifn) + "2i (�vifu � fn)

1A (14)

+"j

�
(1� "i)2

�
�vi 12 ( + fn)

�
+ "i (1� "i) (�vifn)

+"i (1� "i)
�
�vi

�
d+ 1

2
( + fn)

��
+ "2i (�vifu � fn)

�

The expressions for uMi (0; 1; 0; 1) and u
M
i (0; 2; 0; 1) contain two main parts (one per line);

the �rst being the expected payo¤ given sAj = 0 (probability 1� "j); the second the expected
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payo¤ given sAj = 1 (probability "j). Expectations within each bracket are running over the
realisations of the remaining shocks sAi and s

E
i (i�s payo¤s are, as always, independent of p

E
j ,

hence independent of sEj .)

� Consider �rst the case that sAj = 0. If sAi = 0, sEi = 0, sAj = 0, then the urgent payment
is made in the afternoon: pAi = 1, l

E
i = min fCj � 1; vjg, and the payo¤ is �vi 12 ( + fn)

if Cj = 1 or vj = 0, and 0 if vj = 1 and Cj = 2. If sAi = 1, sEi = 0, sAj = 0, then
lEi = 1+min fCj � 1; vjg, and at least the urgent payment can be made in the evening
using incoming liquidity. Payo¤ is �vi

�
d+ 1

2
( + fn)

�
if (Cj = 1 or vj = 0), and �vid

if (vj = 1 and Cj = 2). If sAi = 0, sEi = 1, then one payment can be made in the
afternoon, and payo¤ is �vifn. If sAi = 1, sEi = 1, then payo¤ is �vifu � fn.

� Now consider the case that sAj = 1. Here, payo¤s do not depend on Cj because even
if j wanted, he could not make any payment in the afternoon. Hence, if pAi = 1, then
lEi = 1�pAi = 0, so if i has an urgent payment (probability vi), he needs to raise another
unit of liquidity. Speci�cally: If sAi = 0, s

E
i = 0, s

A
j = 1, then p

A
i = 1, and the payo¤ is

�vi 12 ( + fn). If s
A
i = 0, s

E
i = 1, i can make one payment in period A, and the payo¤

is �vifn. If sAi = 1, sEi = 0, then i can make one payment in period E using incoming
liquidity; the payo¤ is �vi

�
d+ 1

2
( + fn)

�
. If sAi = 1, s

E
i = 1, then payo¤ is �vifu�fn.

Now consider the expected payo¤ when Ci � 1. For Cj � 1,

ui (Ci; Cj; 0; 1) = "i ((1� "i) (�vid) + "i (�vifu � fn)) (15)

If pMj = 1, then lAi = Ci + p
M
j � pMi � 2 and i�s payo¤ is independent of j�s behaviour in

period A (and, of course, also in E). If sAi = 0, then i�s payo¤ is zero. If s
A
i = 1 and s

E
i = 0,

the i�s payo¤ is �vid. Finally, if sAi = 1 and sEi = 1, i�s payo¤ is �vifu � fn.

Expected payo¤s when i pays in the morning (pMi = 1). This is, of course, not an
option if Ci = 0. If the opponent does not pay in the morning (pMj = 0), then i�s expected
payo¤ is, for all Cj,

ui (1; Cj; 1; 0) = " (�vifu) + (1� ")
�
(1� "j) (�vid) + "j

�
�vi

�
1

2
(d+ ) +

1

2
fu

���
(16)

ui (2; Cj; 1; 0) = " ((1� ") (�vid) + " (�vifu)) (17)

To see this, notice �rst that given pMi = 1 and pMj = 0, i�s expected payo¤ is independent
of j�s collateral holdings even when Ci = 1: pMi = 1 and pMj = 0 imply lAj � 1, hence pAj = 1
unless sAj = 1. Speci�cally,

28



� Suppose Cj = 0, lAi = 0, lAj = 1. If sEi = 1, i�s expected payo¤ is �vifu. If sEi = 0 and
sAj = 0, p

A
j = 1, l

E
i = 1, then i�s expected payo¤ is �vid. If sEi = 0 and sAj = 1, then

lEi = 0, and i�s expected payo¤ is �vi
�
1
2
((d+ ) + fu)

�
.

� If, in contrast, Cj � 1, then lAj = Cj + p
M
i � 1. If Ci = 1, then pAi = 0, and either

sAj = 0 (then p
A
j = min

�
Cj + p

M
i ; 1 + vj

	
= 1 +min fCj; vjg � 1, so lEi = lAi + pAj � 1,

and the payo¤ is �vi ("ifu + (1� "i) d)), or sAj = 1 (then pAj = 0, lEi = Ci � 1 = 0,
and the payo¤ is �vi

�
"ifu + (1� "i)

�
1
2
((d+ ) + fu)

��
.) If Ci = 2, then either sAi = 0

(then pAi = vi and the payo¤ is zero), or s
A
i = 1 (then p

A
i = 0. If s

E
i = 0, the payo¤ is

�vid; if sEi = 1, the payo¤ is �vifu.).

If, in contrast, the opponent pays in the morning (pMj = 1), then

ui (Ci; Cj; 1; 1) = "ivi ((1� "i) (�d) + "i (�fu)) (18)

for Ci; Cj � 1. To see this, notice that lAi = Ci � 1, and the remaining payment (if there is
one) can be made in the afternoon (unless sAi = 1) or the evening (unless s

E
i = 1).

Comparative statics To establish lemma 1, we need to show that

@
�
uMi (1; Cj; 0; 0)� uMi (1; Cj; 1; 0)

�
@d

> 0

for all Cj. uMi (1; 0; 0; 0) is given by eq. (8); u
M
i (1; 1; 0; 0) and u

M
i (1; 2; 0; 0) by eq. (11);

and uMi (1; Cj; 1; 0)by eq. (16) for all Cj. Computing the derivatives is straightforward as all
expressions are linear in d. For example, for Cj � 1,

@
�
uMi (1; Cj; 0; 0)� uMi (1; Cj; 1; 0)

�
@d

=

@

0BBB@
"j

�
"2i (�fn � vifu) + "i (1� "i) vi

�
�d�

�
1
2
 + 1

2
fn
��

+"i (1� "i) (�vifn) + (1� "i)2
�
�1
2
vi ( + fn)

� �
+(1� "j) ("i (1� "i) (�vifn � vid) + "2i (�vifu � fn))

�
�
"i (�vifu) + (1� "i)

�
(1� "j) (�vid) + "j

�
�vi

�
1
2
(d+ ) + 1

2
fu
����

1CCCA
@d

=
1

2
vi (1� "i) (2 (1� "i)� "j) > 0

Intuitively, the result stems from the fact that i only su¤ers the delay cost when lAi = 0
(which i can avoid by playing pMi = 0), or when sAi = 1 (which is independent of p

M
i ). Hence,

i is, in expectation, hit harder by an increase in d if pMi = 1 than when pMi = 0.
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Best replies in the morning This is of course only relevant when Ci = 1. When Ci = 0,
pMi = 0 is the only option. When Ci = 2, i always prefers pMi = 1. If pMj = 0, then i prefers
pMi = 0 over pMi = 1 if and only if d � d00L (Cj), where

d00L (0) = d00L (1) +
1

2
( + fn)

1� "j
1� "i � 1

2
"j

d00L (1) = d00L (2) =
2"2i fn � vi (1� "i) (2"i + "j) (fu � fn)

vi (1� "i) (2� 2"i � "j)

The proof proceeds by solving uMi (1; Cj; 0; 0)�uMi (1; Cj; 1; 0) = 0 for d for all three levels
of Cj. For example, if Cj = 0, pMi = 0 is preferred if uMi (1; 0; 0; 0) � uMi (1; 0; 1; 0). Using
the expressions of equations (8) and (16), we have

"i (�vifu) + (1� "i)
�
(1� "j) (�vid) + "j

�
�vi

�
1

2
((d+ ) + fu)

���
� "i (1� "i) (�vifn) + (1� "i)2

�
�vi

�
1

2
fn +

1

2


��
+"2i (�fn � vifu) + "i (1� "i)

�
�vi

�
d+

1

2
fn +

1

2


��
if

vi (1� "i)
�
(1� "i)�

1

2
"j

�
d

�
�
"2i (fn + vifu)� vi"ifu + vi ("i � 1)

2 �1
2
 + 1

2
fn
�
� vi"ifn ("i � 1)

�vi"i ("i � 1)
�
1
2
 + 1

2
fn
�
+ vi"j ("i � 1)

�
1
2
 + 1

2
fu
� �

It is clear that this condition is ful�lled for su¢ ciently large d if "i and "j are not too large.
Solving for d yields d00L (0). d

00
L (1) and d

00
L (2) are determined analogously.

If, in contrast, pMj = 1, then uMi (1; Cj; 1; 1) > u
M
i (1; Cj; 0; 1) for both Cj 2 f1; 2g, as a

straightforward comparison between equations (18) and (15) reveals. This gives rise to the
following lemma:

Lemma 2 If Ci = Cj = 1 and d > max
�
d00L;i (1) ; d

00
L;j (1)

	
, there are two equilibria of the

subgame starting in period M : In E1�, pMi = pMj = 0; whereas in E2�, pMi = pMj = 1.

6.4 Optimal collateral posting at the start of the day

6.4.1 Overview

Lemma 3 provides an intuitive condition under which Ci = 0 is dominated. Lemma 4 then
investigates under which conditions Ci = 1 is preferred over Ci = 2. We then argue that
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these two conditions are independent.

Lemma 3 For su¢ ciently high d > d0L;i (Cj), bank i prefers posting one or two units of
collateral over posting no collateral.

This result should be intuitive: if the costs of delaying the urgent payment are su¢ ciently
high (and the instruction su¢ ciently likely to arrive), then i does not want to rely on incoming
liquidity in the �rst round to �nance the urgent payment instruction. The proof �rst computes
i�s expected payo¤ ui (Ci; Cj) from posting Ci units of collateral at the start of the day, given
optimal play by both players in the subsequent rounds (see lemma 1). The expectation is over
realisations of the operational shock

�
sM1 ; s

M
2 ; s

A
1 ; s

A
2 ; s

E
1 ; s

E
2

�
. d0L;i (Cj) is then determined by

solving ui (1; Cj)� ui (0; Cj) = 0 for d. It is omitted here but available from the authors.14

To illustrate the results with a special case, assume that there is hardly any risk of
operational failure ("i; "j ! 0), and Cj = 1. Then

d0L;i (1) = =vi �
1

2
( + fn)

When vi ! 0, it is always better to post no collateral: When the likelihood of operational
shocks is virtually zero, i can rely on incoming liquidity. This is the basic prisoner�s dilemma
that Bech and Garrat (2003) identi�ed. Assume instead that i is certain to obtain an urgent
payment instruction (vi = 1). If Cj = 1, i can only rely on one unit of incoming liquidity.
If Ci = 0, j does not pay in the morning (by lemma 1), and i has to delay the execution of
the urgent payment transaction in the afternoon (cost: d). In addition, he has to raise the
remaining unit of liquidity in the evening (cost: ( + fn) =2). If these costs exceed the cost
 of raising liquidity in the morning, that is, if d + 1

2
( + fn) > , then i prefers to post

one unit of collateral. If vi > 0, then d + 1
2
( + fn) only has to be paid when i receives an

urgent payment instruction, and i only prefers to post one unit of collateral in the morning
if v

�
d+ 1

2
( + fn)

�
> , equivalent to the de�nition given above.

Lemma 4 investigates the decision between posting one and two units of collateral at the
start of the day. Unsurprisingly, for su¢ ciently high costs of liquidity, posting two units is
dominated.

Lemma 4 If  > L;i, and d > d00L;i, then i prefers Ci = 1 over Ci = 2.

L;i (Cj) = (1� "i) fn �

8<:
(vi (1� 2"i) + 2"2i ) = (2� vi (1� "i)) if Cj = 0

(2vi"i + vi"j + 2"
2
i ) = (2� vi"j (1� "i)) if Cj = 1

"j (2vi"i + vi"j + 2"
2
i ) =

�
2� vi"2j (1� "i)

�
if Cj = 2

14We do not investigate the relation between d0 and d00, but state the result in our proposition for su¢ ciently
high d > max fd0; d00g.
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The proof �rst computes i�s expected payo¤ ui (Ci; Cj) from posting Ci units of collateral
at the start of the day, given optimal play by both players in the subsequent rounds (see lemma
1). The expectation is over realisations of the operational shock

�
sM1 ; s

M
2 ; s

A
1 ; s

A
2 ; s

E
1 ; s

E
2

�
.

L;i (Cj) is then determined by solving ui (1; Cj) � ui (2; Cj) > 0 for . For example, in the
case of Cj = 0, then pj = 0, so following lemma 1, pMi = 0, and ui (1; 0) = �+uMi (1; 0; 0; 0).
If Ci = 2, i is independent of incoming payments, and executes all instructions immediately.
Then

ui (2; 0) = �2 + " ((1� ") (�vid) + " (�vifu)) + "3 (�fn)

Regarding the �rst term, recall that Ci = 2 costs 2. Regarding the second, "i (1� "i) (�vid),
notice that i su¤ers a delay cost �d from the execution of the urgent transaction only if he
obtains such a transaction (probability vi), and if he is unable to execute it immediately in
the afternoon (probability "i) but able to execute it in the evening (probability (1� "i)).
Correspondingly, he fails to execute the urgent transaction if he is hit by an operational
outage in both the afternoon and the evening, resulting in an expected cost given by "2i vifu.
Finally, there is a chance that i is unable to execute the normal transaction if he is hit by
three successive operational outages in the morning, afternoon and evening, resulting in a
cost of "3i (�fn). The proof for the other levels of Cj proceeds correspondingly.
Again, it is instructive to look at the special case of very unlikely operational outages

("i; "j ! 0). Then

L;i (Cj) = fn �
�
vi= (2� vi) if Cj = 0

0 if Cj 2 f1; 2g

If there is hardly any risk of operational failure, there is no bene�t from posting two units
of liquidity if Cj 2 f1; 2g because i can rely on incoming funds in the morning and/or in
the afternoon to make a second payment. In contrast, if the opponent posted no liquidity,
pMj = 0, so pMi = 0 as well because d > d00L;i, and j will not be able to pay before the evening.
Thus, if Ci = 1, and i obtains an urgent payment instruction (probability vi), then i has
to attempt to raise an additional unit of liquidity in the evening. If  > 1

2
vi ( + fn), the

cost of posting this unit of collateral at the start of the day exceeds the expected costs of
attempting to raise it in the evening (which fails with probability 1=2 such that i cannot
execute the remaining normal payment and incurs a cost of fn). An equivalent expression of
this inequality is  > fnvi= (2� vi).
The reader will have noticed that L;i (Cj) is independent of d. This may, at �rst sight,

be surprising, and is an important property: we state in our main proposition that Ci = 1 is
optimal for su¢ ciently high delay costs d (making posting more collateral more attractive),
and su¢ ciently high costs of collateral  (making posting less collateral more attractive), so
it is important to show that these two conditions are independent to ensure that such (d; )
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indeed exist. The key point is that lAi � 1 if Ci 2 f1; 2g and d > dL;i. Consequently, liquidity
is always available to make the urgent payment. This is obvious when Ci = 2. To see that this
also holds for Ci = 1, recall from lemma 1 that in this case, pMi = 0 only if pMj = 0, in which
case lAi = Ci = 1. Conversely, p

M
i = 1 only if pMj = 1, in which case lAi = Ci � pMi + pMj = 1

as well. Consequently, if i obtains an urgent payment instruction (vi = 1), then i only
incurs the delay cost d if i is struck by operational problems in the afternoon (sAi = 1). But
operational shocks are independent of start-of-day liquidity postings. Thus, given Ci 2 f1; 2g
and d > d00L;i, the expected delay cost is independent of of Ci.

6.4.2 Details

The proof proceeds by comparing i�s expected payo¤s ui (Ci; Cj), where the expectation is
running over the realisation of all six operational shocks, for d > d00L (Cj).

If Ci = Cj = 0, then pMi = pMj = 0 independently of operational shocks in the morning,
and ui (0; 0) = uMi (0; 0; 0; 0), which is given by equation (7).

If Ci = 0 and Cj = 1, neither player pays in the morning independently of sMi and sMj ,
and ui (0; 1) = uMi (0; 1; 0; 0), given by equation (9).

If Ci = 0 and Cj = 2, then pj = 1 unless sMj = 1. Hence ui (0; 2) = "ju
M
i (0; 2; 0; 0) +

(1� "j)uMi (0; 2; 0; 1), where uMi (0; 2; 0; 0) is given by equation (10), and uMi (0; 2; 0; 1) by
equation (14).

If Ci = 1 and Cj = 0, neither player pays in the morning independently of sMi and sMj ,
and ui (1; 0) = � + uMi (1; 0; 0; 0), given by equation (8).
If Ci = 1 and Cj = 1, there are two possible equilibria (cf. lemma 2): One in which

neither player pays in the morning (exists independently of sMi and sMj ), and one in which
both players pay unless hit by an operational shock.

ui (1; 1) =

�
� + uMi (1; 1; 0; 0) in E1�
� + (1� (1� "i) (1� "j))uMi (1; 1; 0; 0) + (1� "i) (1� "j)uMi (1; 1; 1; 1) in E2�

where uMi (1; 1; 0; 0) is given by eq. (11) and u
M
i (1; 1; 1; 1) by eq. (18).

If Ci = 1 and Cj = 2, then pMj = 0 if sMj = 1, and pMj = 1 otherwise (independently of
sMi ). The payo¤ is

ui (1; 1) = � + "juMi (1; 2; 0; 0) + (1� "j)
�
"iu

M
i (1; 2; 0; 1) + (1� "i)uMi (1; 2; 1; 1)

�
where uMi (1; 2; 0; 0) is given by eq. (11), u

M
i (1; 2; 0; 1) by eq. (15), and u

M
i (1; 2; 1; 1) by eq.

(18).
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If Ci = 2, ui is independent of pj. pMi = 1 only if sMi = 0. Expected payo¤s are

ui (2; Cj) = �2 + "iui
�
2; Cj; 0; p

M
j

�
+ (1� "i)ui

�
2; Cj; 1; p

M
j

�
= �2 + "i ((1� "i) (�vid) + "i (�vifu)) + "3i (�fn)

for all Cj, where ui
�
2; Cj; 0; p

M
j

�
is given by (12) (this is computed for pMj = 0, but if pMj = 1,

i simply has excess liquidity), and ui
�
2; Cj; 1; p

M
j

�
is given by (17) (which is identical to eq.

(18)).

It is now straightforward to prove lemma 3 by solving ui (1; Cj) � ui (0; Cj) = 0 for d to
obtain d0L;i (Cj). We only provide the results:

d0L;i (0) =
1
2
(1� vi (1� "j (1� "i)))  �

�
vi"

2
i � 1

2
vi"j � "2i � vi"i + 1

2
vi"i"j +

1
2

�
fn �

�
1
2
vi � vi"2i

�
fu

1
2
vi (1� 2"i (1� "i))

d0L;i (1) =

0@ 1
2
("j ("i � 1) ("jvi"i � "jvi � vi"i + 1) + vi"i � vi + 2) 

+1
2
("i � 1)

�
vifn + 2"ifn + "jfn + 2"

2
i fn � 2"2i "jfn � vi"jfn + 2vi"ifu

+vi"jfu � 2vi"2i fn � vi"2jfn + vi"i"2jfn + 2vi"2i "jfn � 3vi"i"jfn

� 1A
1
2
vi ("i � 1) (2"i + "j � 2)

d0L;i (2) = �1
2
vi (1� vj) ( + fn)

It is similarly straightforward to prove lemma 4 by solving ui (2; Cj) � ui (1; Cj) = 0 for
 to obtain L;i (Cj). Notice that if d > d00L;i, the terms in d cancel out (because i ensures
through its behaviour that in both subgame equilibria E1�and E2�, it has enough liquidity to
immediately execute an urgent payment instruction in period M - compare lemma L1). To
provide an example for Cj = 1: Then Ci = 2 is preferred over Ci = 1 if ui (2; 1) > ui (1; 1),
ie, if

�2 + "i ((1� "i) (�vid) + "i (�vifu)) + "3i (�fn)

> � + "j

�
"2i (�fn � vifu) + "i (1� "i) vi

�
�d�

�
1
2
 + 1

2
fn
��

+"i (1� "i) (�vifn) + (1� "i)2
�
�1
2
vi ( + fn)

� �
+(1� "j) ("i (1� "i) (�vifn � vid) + "2i (�vifu � fn))

Equivalently,�
1� 1

2
vi"j (1� "i)

�
 <

1

2
fn (1� "i)

�
2vi"i + vi"j + 2"

2
i

�
and the corresponding equality yields L;i (1).
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