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1 Introduction

The objective of this paper is to improve our ability to predict exchange rates. In partic-

ular, I present a model where restrictions derived from the assumption of no-arbitrage are

imposed on the joint behaviour of interest and exchange rates. In this model, prediction

is based on the information embedded in interest rate di¤erentials. An example of such

information is the well-established fact that regressing ex-post rates of depreciation of a

given currency on a constant and the interest rate di¤erential usually delivers a slope coe¢ -

cient that is negative (see i.e. Hodrick, 1987 and Engel, 1996). This phenomenon is known

as the �forward premium puzzle� and it implies that currencies where domestic interest

rates are high relative to those in the foreign country tend to appreciate. In fact, Clarida

and Taylor (1997), using a linear vector error correction model (VECM) framework for

the term structure of forward premiums (interest rate di¤erentials), were able to beat the

long-standing and devastating result found by Meese and Rogo¤ (1983a,b) that standard

empirical exchange rate models cannot outperform a simple random walk forecast. Thus,

interest rates across countries contain information that is useful to predict exchange rates

However, the VECM framework is based solely on the time series properties of interest

and exchange rates; and it does not take into account that, for example, a deposit denomi-

nated in foreign (domestic) currency is risky (due to exchange rate variability) for domestic

(foreign) investors, and therefore investors will demand compensation for bearing such risk.

As a result, movements in interest and exchange rates must be related in such a way that

they preclude the existence of arbitrage opportunities.

This paper investigates whether imposing such set of restrictions in the estimation of the

joint dynamics of interest and exchange rates helps to improve over the Clarida and Taylor

(1997) framework. In principle, imposing cross-equation restrictions will reduce the large

number parameters that characterizes traditional time series models and, consequently, it

will reduce excessive parameter estimation uncertainty that may adversely a¤ect its out-

of-sample forecasting performance. This insight is con�rmed by Du¤ee (2002) and Ang

and Piazzesi (2003) who �nd that imposing no-arbitrage restrictions helps out-of-sample

forecasting of yields.

For the sake of tractability, the focus of this paper is on internationally a¢ ne term

structure models, that is, models where not only interest rates (yields) are a¢ ne known

functions of a set of state variables, but also the expected rate of depreciation (over any
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arbitrary period of time) satis�es this property. The main bene�t of focusing on this class

of models is that we avoid the use of Monte Carlo methods to compute the expected rate

of depreciation. Although this is a perfectly valid approach (cf. Dong, 2005), the use

of Monte Carlo methods for the task of predicting exchange rates can be computationally

costly because the model is re-estimated at each point of time (of the out-of-sample period)

in order to compute the corresponding dynamic forecasts. A �rst contribution of this paper

is to provide conditions to obtain an expected rate of depreciation that is a¢ ne on the set

of state variables.

Two families of dynamic term structure models fall within this internationally a¢ ne

framework. The �rst subgroup is the so-called completely a¢ ne term structure model

introduced in Dai and Singleton (2000) and it covers most of the work done on international

term structure modeling: i.e. Saa-Requejo (1993), Frachot (1996), Backus et al. (2001),

Dewachter and Maes (2001), Hodrick and Vassalou (2002), and Ahn (2004). However,

Backus et al. (2001) show that the speci�cation of the prices of risk in these models

constrains the relationship between interest rates and the risk premium in such a way that

the ability to reproduce the forward premium puzzle, and therefore their ability to capture

the properties of interest and exchange rates, is severely limited. Despite this fact, more

�exibility in modeling the relationship between interest and exchange rates can be achieved

from the second group of models that falls within the internationally a¢ ne framework:

the quadratic-Gaussian class of term structure models introduced in Ahn, Dittmar and

Gallant (2002) and Leippold and Wu (2002). In these models, both the interest rates and

the expected rate of depreciation are a¢ ne once we augment the set of state variables

to include the squares and the cross-products of the original set of factors. The models

in Leippold and Wu (2003) and Inci and Lu (2005) belong to this category. It is also

worth mentioning at this point that Gaussian essentially a¢ ne models can be viewed as a

particular case of the quadratic case where interest rates are a¢ ne but the expected rate

of depreciation is quadratic. Therefore, the models in Brennan and Xia (2004) and Dong

(2005) also belong to the internationally a¢ ne class. Finally, another model that does

not fall between these two families but that generates a¢ ne interest rates and an a¢ ne

expected rate of depreciation is the one in Graveline (2005).

Still, the main disadvantage of an internationally a¢ ne model is that tractability comes

at the price of imposing more restrictions than the ones that the assumption of no-arbitrage
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implies. The results obtained in this paper suggest, however, that a two factor Gaussian

essentially a¢ ne model produces forecasts that are superior, on the basis of Root-mean-

square error (RMSE) and Mean-absolute-error (MAE) criteria, to those produced by the

random walk model and the Clarida and Taylor (1997) approach. I �nd that imposing

no-arbitrage restrictions reduces the RMSE in forecasting the spot U.S. Dollar �Sterling

Pound rate by around 35% at the one-year forecast horizon relative to the VECM approach,

and by around 15% for the case of the U.S. Dollar - Canadian Dollar. I also �nd that the

gains (if any) from using a linear VECM model with respect to the use of a random walk

model are small. For example, the gain at the one year horizon for the U.S. Dollar �Sterling

Pound is only a 2.4% (versus the 40% reported by Clarida and Taylor, 1997). In addition,

the model is able to reproduce the forward premium anomaly.

The paper is organized as follows. Section 2 describes the data. Section 3 introduces the

concept of internationally a¢ ne term structure model and discusses several speci�cations

that fall within this framework. Section 4 presents the empirical exercise. Finally, Section

5 concludes.

2 Data

The data set comprises monthly observations over the period January 1976 to December

2004 of U.S. Dollar �Sterling Pound and U.S. Dollar �Canadian Dollar rates of deprecia-

tion, along with the corresponding American, British and Canadian Eurocurrency interest

rates of maturities 1, 3, 6 and 12 months. These Eurocurrency deposits are essentially

zero coupon bond whose payo¤s at maturity are the principal plus the interest payment.

Exchange rate (expressed as U.S. dollars per unit of foreign currency) and Eurocurrency

interest rate data are obtained from Datastream. However, the estimations are carried out

using only data over the period January 1976 to December 1997 in order to reserve the last

seven years of data for an out-of-sample forecasting exercise.

Table 1 panel a reports summary statistics for these variables. Following Bekaert and

Hodrick (2001), all variables are measured in percentage points per year, and the monthly

rates of depreciation are annualized by multiplying by 1,200. Note that the rates of de-

preciation have lower means (in absolute value) than the one corresponding to the interest

rates but, on the contrary, interest rates are less volatile. In addition, interest rates display

a high level of autocorrelation while the expected rates of depreciation do not. The rate of
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depreciation of the U.S. Dollar with respect to the Canadian Dollar is less volatile than the

rate of depreciation of the U.S. Dollar with respect to the Sterling Pound. The (average)

spread between the one year and the one month interest rate is positive for the case of the

U.S. while negative for the case of the U.K. and Canada. Finally, the U.K. ranks �rst in

terms of the highest (average) level of interest rates during our sample period. Canada and

the U.S. rank second and third, respectively. These properties are consistent with previous

studies such as, e.g., Backus, et al. (2001) and Bekaert and Hodrick (2001).

Panel b presents the results of the estimation of the forward premium regressions for the

U.S. Dollar �Sterling Pound and the U.S. Dollar �Canadian Dollar for the four di¤erent

maturities available. These are OLS regressions of the ex-post rate of depreciation on a

constant an the forward premium:

st+h � st = a+ bp(h)t + ut+h (1)

where st is the logarithm of the spot exchange rate St (i.e. dollars per pound), p
(h)
t = f

(h)
t �st

is the forward premium and ft is the logarithm of the forward rate F
(h)
t contracted at time

t and that matures at t + h. The uncovered interest parity (UIP) states that, under risk

neutrality, the nominal expected return to speculation in the forward foreign exchange

market conditional on the available information must be equal to zero:

Et [st+h � st] = f (h)t � st (2)

and therefore it implies that we should �nd that the constant term is equal to zero while the

slope is equal to one, that is, a = 0 and b = 1 when running a regression such as the one in

equation (1). Moreover, notice that this hypothesis implies that the (log) forward exchange

rate is an unbiased predictor of the h-periods ahead (log) spot exchange rate; property

that has motivated another name for the uncovered interest parity: the �unbiasedness

hypothesis�. Most often, the uncovered interest parity is stated in terms of the interest

rate di¤erential between two countries. In particular, the covered interest parity states

that the forward premium is equal to the interest rate di¤erential between two countries:

f
(h)
t � st = r

(h)
t � r�(h)t , where r(h)t and r

�(h)
t are the h-period interest rates on a deposit

denominated in domestic and foreign currency respectively.

For the case of the Sterling Pound, the dataset implies a slope equal to -1.84 when

considering a contract maturity of one month, -1.50 for three-month contracts, -1.36 for

six-month contracts and -0.82 for one-year contracts. As for the case of the Canadian
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Dollar, the slope is -1.35, -0.83, -0.43 and -0.24 for one, three, six and twelve months

contracts, respectively. Moreover, it is possible to reject statistically the equality of these

slopes to one on a maturity-by-maturity basis (panel b) and when jointly testing that the

four coe¢ cients are equal to one (panel c).

As previously noted, this result is inconsistent with the uncovered interest parity and

it has been claimed that the main reason for this rejection lies in the fact that agents are

not risk neutral. This idea goes back to the in�uential work of Fama (1984) who shows

that if certain conditions are met then the forward premium puzzle can be explained by the

existence of rational (time-varying) risk premia in foreign exchange markets. To illustrate

his argument, let�s start by the so-called Fama�s decomposition of the forward premium

into an expected rate of depreciation and a risk premium component:

ft � st| {z } =
p
(h)
t

Et [st+h � st]| {z }
q
(h)
t

+ ft � Etst+1| {z }
d
(h)
t

(3)

where q(h)t is the expected rate of depreciation between time t and time t � h, p(h)t is the

forward premium, and d(h)t is the risk premium in Fama�s terminology.

Using the law of iterated expectations and substituting this decomposition of the for-

ward premium into the de�nition of the uncovered interest parity regression slope in equa-

tion (1) we obtain:

b(h) =
Cov[q

(h)
t ; p

(h)
t ]

V ar[p
(h)
t ]

=
V ar[q

(h)
t ] + Cov[q

(h)
t ; d

(h)
t ]

V ar[p
(h)
t ]

where I write the slope as a function of the maturity h to emphasize that there is a di¤erent

slope for each value of h. Then, b(h) can take negative values when the risk premium d
(h)
t

is time-varying and satis�es the condition V ar[q(h)t ] + Cov[q
(h)
t ; d

(h)
t ] < 0. Fama (1984)

translates this inequality into two conditions that have been extensively studied in the

literature:

1. Negative covariance between q(h)t and d(h)t

2. Greater variance of d(h)t than q(h)t .

Therefore, a model of the joint behaviour of interest and exchange rates needs to satisfy

these two conditions in order to be empirical plausible.
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3 Internationally A¢ ne Models

The analysis is similar to that in Backus, et al. (2001) and Brandt and Santa-Clara (2002)1.

It is based on a two-country world where assets can be denominated in either domestic

currency (i.e. �dollars�) or foreign currency (i.e. �pounds�). As usual, starred � variables
are foreign counterparts of domestic variables; and I use (�) to denote domestic and foreign
quantities at the same time and without distinction.

Initially, consider by a no arbitrage argument the existence of a (strictly positive) dis-

count factor (SDF) Mt that prices any traded asset denominated in dollars through the

following relationship2:

Xt = Et

�
Mt+h

Mt

Xt+h

�
(4)

where Xt is the value of a claim to a stochastic cash �ow of Xt+h dollars h periods later.

Equivalently, we can also divide both sides of this expression by Xt to reformulate the

previous expression as:

1 = Et

�
Mt+h

Mt

Rt+h

�
(5)

where Rt+h = Xt+h=Xt is just the gross h-periods return on the asset.

For example, this relationship can be used to price a zero coupon bond that promises to

pay one dollar h-periods ahead (Xt+h = 1). Let P
(h)
t be the price of this bond. In this case,

direct application of the pricing relationship in equation (4) gives that P (h)t must equal the

conditional expectation of the ratio of the future and actual value of the SDF:

P
(h)
t = Et

�
Mt+h

Mt

�
If, instead, we consider a position in a h-period contract in the forward foreign exchange

market, which involves no payment at date t while a payo¤ of F (h)t � St+h at time t + h,
we obtain:

0 = Et

�
Mt+h

Mt

�
F
(h)
t � St+h

��
Alternatively, we might also need to price assets denominated in foreign currency such

as, for instance, a pound-denominated zero coupon bond. Again, consider a no-arbitrage

1See also Guimarães (2006) for a more general setting including jumps.
2The SDF is alternatively known as pricing kernel or state price density and it is a concept related to the

representative agent�s nominal intertemporal marginal rate of substitution of consumption (See Cochrane,
2001 for an extended discussion on the SDF)
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approach to postulate the existence of a foreign SDFM�
t that prices any asset denominated

in pounds through the following relationship:

1 = Et

�
M�
t+h

M�
t

R�t+h

�
(6)

where now R�t+h is the gross h-periods return on an asset denominated in foreign currency.

However, any return denominated in pounds can be expressed in dollars once it is

adjusted by the rate of change of the bilateral spot exchange rate St+h=St. Thus, it must

be the case that:

1 = Et

�
Mt+h

Mt

St+h
St
R�t+h

�
In other words, the law of one price implies that any foreign asset must be correctly

priced by both the domestic and the foreign SDFs:

Et

�
Mt+h

Mt

St+h
St
R�t+h

�
= Et

�
M�
t+h

M�
t

R�t+h

�
= 1

As noted by Backus, et al. (2001) and Brandt and Santa-Clara (2002), this equation is

trivially satis�ed by a foreign SDF such that:

M�
t =MtSt (7)

and, furthermore, if markets are complete this speci�cation of the foreign SDF is unique.

Therefore, the exchange rate St is uniquely determined by the ratio of the two pricing

kernels; and we can obtain the law of motion of the (log) exchange rate st = logSt using

Itô�s lemma on the stochastic processes of Mt and M�
t .

Hence, assume the following dynamics of the domestic and foreign SDF:

dMt

Mt

= �r(xt; t)dt��(xt; t)0dWt (8)

dM�
t

M�
t

= �r�(xt; t)dt���(xt; t)0dWt

where rt and r�t are the instantaneous domestic and foreign interest rates (also known as

short rates);Wt is a n-dimensional vector of independent Brownian motions that describes

the shocks in this economy; and �t and ��t are two n-vectors that are usually called the

market prices of risk because they describe how the domestic and foreign SDFs respond to

the shocks given byWt. In general, the short rates and the prices of risk are functions of
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time t and a Markovian n-dimensional vector xt that describes completely the state of the

economy. The law of motion of these state variables xt is given by a di¤usion such as:

dxt = �x(xt; t)dt+ �x(xt; t)dWt (9)

where �x is a n-dimensional vector of drifts, and �x is a n � n state-dependent factor-
volatility matrix.

Using Itô�s lemma on (8) and substracting we get:

dst =

�
(rt � r�t ) +

1

2
(�0t�t ���0t ��t )

�
dt+ (�t���t )

0dWt (10)

This equation ties the dynamic properties of the exchange rate to the speci�c parameter-

ization of the drift (interest rates), the di¤usion (price of risk) coe¢ cients in (8), and the

dynamic evolution of the set of state variables (because interest rates and the prices of risks

are ultimately related to those). In particular, if we focus on an Euler discretization to the

process of the exchange rate and take expectations, we �nd that:

qt = Et [st+1 � st] ' (rt � r�t ) +
1

2
(�0t�t ���0t ��t ) (11)

Note that since the covered interest parity implies that the �rst term of qt is equal to the

forward premium pt = (rt � r�t ), this equation states a Fama�s decomposition where the
risk premium is equal to dt = 1

2
(�0t�t � ��0t ��t ). In other words, Fama�s risk premium

is proportional to the di¤erential between the instantaneous variances of the SDFs across

the two countries; and, more important, it is time-varying because the prices of risks are

usually functions of the state-vector xt. Consequently, the uncovered interest parity does

not necessarily hold in this no-arbitrage framework3.

Despite this result, we should be aware that equation (11) is only an approximation to

the true expected rate of depreciation. First, it ignores the internal dynamics of the vari-

ables from moment t to t+1. That is, if we approximate the expected rate of depreciation

over one month using this equation then our approach ignores that exchange rates move,

say, �second-by-second�and that shocks accumulate during this time. Second, rt and r�t
3One exception where the uncovered interest parity holds is the case when the SDF is conditionally

homoscedastic (�0t�t = � and �
�0
t �

�
t = �

� being � and �� two positive constants). In this case, we are
within the framework of Hansen and Hodrick (1983) who have shown that, with an additional constant
term, the uncovered interest parity is consistent with a model of rational maximizing behaviour in which
assets are priced by a no arbitrage restriction. The intuition behind why this hypothesis still holds is that
agents are risk-averse, but the risk-premia is not time-varying.
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are instantaneous interest rates and not the relevant interest rates on an h-period deposit

denominated in domestic and foreign currency, r(h)t and r�(h)t respectively. Namely, it is

hard to think of the instantaneous interest rates as being a good proxy of their one-year

counterparts.

Still, we need to compute the expected rate of depreciation for an arbitrary choice

of h (say, 1, 3, 6 months or 1 year) in order to predict the future exchange rate. We

can potentially resort to Monte Carlo methods and, given a set of parameters and initial

conditions, simulate paths of the exchange rate and obtain the expected rate of depreciation

over an arbitrary sample period h computing the average change of the exchange rate across

the simulated paths. However, this Monte Carlo approach can be computationally costly,

especially if the model is re-estimated at each point of time t and then dynamic forecasts

of the spot exchange rate are computed. Therefore, this paper follows a di¤erent avenue of

research that is in the spirit of the literature on exponentially-a¢ ne bond pricing: to restrict

the speci�c functional forms of the short rates, prices of risk, and the drift and di¤usion

terms of the state variables so as to have a closed-form expression for the expected rate of

depreciation (h-periods ahead).

In particular, this paper extends the class of a¢ ne term structure models to an interna-

tionally a¢ ne setting where not only the interest rate on a h-period deposit denominated

in domestic and foreign currency (r(h)t and r
�(h)
t , respectively) are a¢ ne (known) functions

of a set of state variables xt:

r
(h)
t = A(h) +B(h)0xt

r
�(h)
t = A�(h) +B�(h)0xt

but also the expected rate of depreciation (h-periods ahead) is a¢ ne in the set of state

variables xt:

q
(h)
t = Et [st+h � st] = C(h) +D(h)0xt

Nonetheless, the tractability obtained by using an internationally a¢ ne model must

come at a price. In particular, we need to impose a set of restrictions on the model that

will ultimately constrain the speci�c functional forms of A(h), B(h), C(h), and D(h) and

our ability to predict the exchange rates. In particular, we require two set of restrictions.

First, those needed to have interest rates in a¢ ne form and which can be found in Du¢ e

and Kan (1996) (see the next subsection for some examples). Second, those conditions
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needed to obtain an a¢ ne expected rate of depreciation (h-periods ahead) and which can

be found in the next proposition:

Proposition 1 If the drift of the process that the log exchange rate st follows is a¢ ne in

a set of state variables xt, that is,

Etdst = (0 + 
0xt)dt (12)

with 0 2 R and  2 Rn, and xt follows an a¢ ne di¤usion:

dxt = �(� � xt)dt+�1=2V (xt)1=2dWt (13)

where � and � are n� n matrices, � is a n-vector, V (xt) is a diagonal n� n matrix with
i-th typical element vi(xt) = �i + �

0
ixt, and Wt is a n-dimensional vector of independent

Brownian motions; then, the expected rate of depreciation (h-periods ahead) is a (known)

a¢ ne function of the state vector xt:

q
(h)
t = Et [st+h � st] = C(h) +D(h)0xt (14)

where the coe¢ cients C(h) 2 R and D(h) 2 Rn have the following expressions:

C(h) = 0h+ 
0�h�  0��1 �I � e��h��

D(h)0 =  0��1
�
I � e��h

�
Proof. See appendix.

The result in this proposition is novel because (up to the best of my knowledge) the

literature on multi-country a¢ ne models has focused almost entirely on Euler approxima-

tions to the expected rate of depreciation h-periods ahead and, therefore, their results are

subject to the shortcomings mentioned before4. In particular, this proposition tells us that

an a¢ ne expected rate of depreciation requires both the short rates (rt and r�t ) and the

instantaneous variances of the pricing kernels (�0t�t and �
�0
t �

�
t ) to be a¢ ne in xt (which

guarantees that the drift of the log exchange rate st is a¢ ne); and, at the same time, the

process that xt follows must be an a¢ ne di¤usion. If we compare these conditions with

4For example, Hodrick and Vassalou (2002) Leippold and Wu (2003) and Ahn (2004) focuses on Euler
approximations of the law of motion of the (log) exchange rate, so their formulae regarding the expected
rate of depreciation is only valid for h arbitrary small. One exception is Dewatcher and Maes (2001) who
provide the expressions for the expected rate of depreciation for an arbitrary choice of h. However, their
model is just a particular example of the general framework provided here.
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those needed to obtain interest rates in a¢ ne form we realize that an internationally a¢ ne

model imposes additional constraints with respect to the class of a¢ ne term structure

models. For example, it is possible to obtain a¢ ne interest rates without having an instan-

taneous variance of the SDF that is a¢ ne in xt (see e.g. Du¤ee, 2000 and Cheridito, et al.

2005) or without the condition that the state vector must follow an a¢ ne di¤usion (see e.g.

Duarte, 2004). The next subsections investigates which models satisfy the internationally

a¢ ne conditions and to what extent this represents a constraint to predict exchange rates.

3.1 A¢ ne Models of Currency Pricing

Up to this point, we are interested in �nding those models that fall within the internationally

a¢ ne framework, that is, those models where not only interest rates are a¢ ne (known)

functions of a set of state variables, but also the expected rate of depreciation satis�es this

property. Since one of our demanded characteristics is that the interest rates must be a¢ ne

in a set of factors and it is well known that the standard formulation of the a¢ ne term

structure models shares this property, I start by establishing the properties of the exchange

rate implied by this class of models.

To this end, I focus on a multi-country version of the Dai and Singleton (2000) stan-

dard formulation of these a¢ ne term structure models that nests most of the work on

international term structure modeling5. These models can be considered as multivariate

extensions of the Cox, Ingersols and Ross (1985) model and they are characterized by an

instantaneous interest rate (also known as short rate) that is an a¢ ne function of the set

of state variables xt:

rt = �0 + �
0
1xt (15)

r�t = ��0 + �
�0
1 xt

where �0, �
�
0 are two scalars, and �1, �

�
1 are two n-dimensional vectors. The dynamic

evolution of these n state variables is given by the following a¢ ne di¤usion:

dxt = �(� � xt)dt+�1=2V (xt)1=2dWt (16)

where, again, � and � are n� n matrices, � is a n-vector, and V (xt) is a diagonal n� n
matrix with i-th typical element vi(xt) = �i + �

0
ixt. Wt is a n-dimensional vector of

5See e.g. Saa-Requejo (1993), Frachot (1996), Backus et al. (2001), Dewachter and Maes (2001),
Hodrick and Vassalou (2002), and Ahn (2004)
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independent Brownian motions. Since it is possible for an arbitrary set of parameters

that the state variables xt enter in a region where vi(xt) = �i + �
0
ixt is negative, which

would imply that the state vector has a negative conditional variance, Dai and Singleton

(2000) provide a set of restrictions on the parameters of the model that guarantees that

the dynamics of xt are well de�ned. Finally, the model is completed by an speci�cation of

the domestic and foreign prices of risk such that:

�t = V (xt)
1=2� (17)

��t = V (xt)
1=2��

This standard formulation of these a¢ ne term structure models is also known as �com-

pletely a¢ ne�speci�cation (see Du¤ee, 2002) because it has an instantaneous variance of

the SDFs, �(�)0t �
(�)
t , that is a¢ ne in the set of factors xt.

Under this parameterization, interest rates on h-period deposits denominated in domes-

tic and foreign currencies satisfy:

r
(h)
t = A(h) +B(h)0xt

r
�(h)
t = A�(h) +B�(h)0xt

where the coe¢ cients A(�)(h) 2 R and B(�)(h) 2 Rn solve two systems of ordinary di¤eren-
tial equations whose details can be found in e.g. Du¢ e and Kan (1996), Dai and Singleton

(2003) and Piazzesi (2003).

Substituting the expressions for the short rates and the prices of risk into the law of

motion of the (log) exchange rate in equation (10) gives:

dst = (0 + 
0xt)dt+ (�� ��)0V (xt)1=2dWt (18)

where 0 and  are:

0 = (�0 � ��0) +
1

2

NX
i=1

(�2i � ��2i )�i

 = (�1 � ��1) +
1

2

NX
i=1

(�2i � ��2i )�i

Therefore, Proposition 1 holds: the drift of the (log) exchange rate is a¢ ne in a set of state

variables xt and these state variables follow an a¢ ne di¤usion. This property adds a new

meaning to the term �completely a¢ ne speci�cation�.
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However, it has been found that this �completely a¢ ne�speci�cation of the prices of

risk is empirically restrictive. For example, Du¤ee (2002) �nds that this parameterization

produces forecasts of future Treasury yields that are beaten by a randomwalk speci�cation6;

and Backus, et al. (2001) point out that this model constrains the relationship between

interest rates and the risk premium in such a way that the ability of the model to capture

the forward premium puzzle, and therefore the ability to predict exchange rates, is severely

limited. Therefore, we need to make more �exible assumptions on the form of the prices

of risk. However, those models with more �exible speci�cations of the prices of risk, as the

�essentially a¢ ne speci�cation�in Du¤ee (2002) or the �extended a¢ ne speci�cation�in

Cheridito, et al. (2005), do not necessarily have an instantaneous variance of the SDF that

is a¢ ne in the state variables7. In particular, a similar point has been given in Guimarães

(2006): �[...] with these [Cheridito et al. (2005)] market prices of risk exchange rates will

be a nonlinear (not even polynomial) function of latent state variables�.

Still, there is hope in reproducing the forward premium puzzle. Dai and Singleton

(2002) have been successful in explaining puzzles in a similar conceptual framework to

the forward premium anomaly: the rejection of the expectations hypothesis of the term

structure of interest rates8. In particular, they show that a Gaussian essentially a¢ ne model

can generate �exible enough time-varying risk premia in holding-period bond returns so

as to solve the failure of this traditional �expectation theory�. Therefore, the question is

whether this model can also reproduce the �forward premium puzzle�.

In their model, the speci�cation of the prices of risk is a¢ ne in a set of variables9:

�
(�)
t = �

(�)
0 + �

(�)
1 xt

where �0 and �
�
0 are two n-dimensional vectors, and �1, �

�
1 are two n�n matrices; and the

6Du¤ee (2002) claims that this is because i) the price of risk variability only comes from V (xt)
1=2 and

ii) because the sign of �(�)t cannot change as the elements of V (xt)1=2 are restricted to be nonnegative
7One exception is Graveline (2005) whose model is based on the �extended a¢ ne speci�cation� in

Cheridito, et al. (2004). However, he restricts these prices of risk in such a way that the cancelations in
equation (10) delivers an a¢ ne di¤usion for the exchange rate.

8See Bekaert and Hodrick (2001) for this relationship between the expectation hypothesis of the term
structure of interest rates and the uncovered interest parity (also known as expectation hypothesis of the
foreign exchange market).

9As claimed by Dai and Singleton (2002): �Since LPY (the expectations hypothesis of the term struc-
trure) refers to the properties of the (conditional) �rst moments of yields, and the family of Gaussian
models (family A0(3)) gives the most �exibility to the structure of factor correlations and conditional
means, one might conjecture a priori that these models would perform at least as well as other a¢ ne
models�. Therefore, since the uncovered interest parity refers also to the properties on the (conditional)
�rst moments, but now of exchange and interest rates, we can apply the same reasoning to our case.
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latent state variables follow a multivariate Orstein-Uhlenbeck (Gaussian) process. Again,

this model falls within the essentially a¢ ne speci�cation in Du¤ee (2002) and it does not

generate an a¢ ne expected rate of depreciation because the variance of the SDF �(�)0t �
(�)
t

is quadratic in xt:

�
(�)0
t �

(�)
t = �

(�)0
0 �

(�)
0 + 2�

(�)0
0 �(�)xt + x

0
t�
(�)0�(�)xt

However, quadratic models can be viewed as being �a¢ ne�in an augmented set of factors

obtained by stacking the original one and their respective squares and cross-products10.

This idea is exploited in the next subsection.

3.2 Quadratic Models of Currency Pricing

These term structure models are characterized by an instantaneous interest rate that is a

quadratic function of the set of state variables xt:

rt = �0 + �
0
1xt + x

0
t�2xt (19)

r�t = ��0 + �
�0
1 xt + x

0
t�
�
2xt

where �0, �
�
0 are two scalars, �1, �

�
1 are two n-dimensional vectors, and �2, �

�
2 are two

symmetric n � n matrices. The state variables follow a multivariate Orstein-Uhlenbeck

(Gaussian) process:

dxt = �(� � xt)dt+�1=2dWt (20)

where � and � are n � n matrices, � is a n-vector; and Wt is a n-dimensional vector

of independent Brownian motions. As a di¤erence with the prices of risk in a completely

a¢ ne framework, the price of risk is a linear function of the state variables xt:

�t = �0 + �1xt (21)

��t = ��0 + �
�
1xt

where �0 and �
�
0 are two n-dimensional vectors, and �1, �

�
1 are two n� n matrices. More-

over, note that the Gaussian essentially a¢ ne speci�cation in Dai and Singleton (2002),

which has both short rates and the prices of risk being a¢ ne in a set of Gaussian state

10A similar argument has been given in Cheng and Scaillet (2002), Dai and Singleton (2003b), Gouriéroux
and Sufana (2003) within the one-country set-up.
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variables, is nested by this quadratic formulation when �2 = �
�
2 = 0. I will return to this

model shortly.

Ahn, Dittmar and Gallant (2002) and Leippold and Wu (2002) show that in this frame-

work interest rates have a quadratic form:

r
(h)
t = A(h) +B1(h)

0xt + x
0
tB2(h)xt

r
�(h)
t = A�(h) +B�1(h)

0xt + x
0
tB

�
2(h)xt

where the coe¢ cients A(�)(h) 2 R, B(�)1 (h) 2 Rn and B
(�)
2 (h) 2 Rn�n solve two systems of

ordinary di¤erential equations. Therefore, this model does not fall within the internation-

ally a¢ ne framework. However, we can still view any quadratic model as being a¢ ne in

an augmented set of variables obtained by stacking the original one and their respective

squares and cross-products. This point can be illustrated with an example. First, assume

that short rates in both countries are quadratic in a global factor xt:

r
(�)
t = �

(�)
0 + �

(�)
1 xt + �

(�)
2 x

2
t

and that this state variable follows a Gaussian process such as:

dxt = �(� � xt)dt+ �dWt

Finally assume that the prices of risk are a¢ ne in this global factor:

�
(�)
t = �

(�)
0 + �

(�)
1 xt

Note that this set of assumptions implies that the h-period domestic and foreign interest

rates will satisfy a quadratic relationship:

r
(�)(h)
t = a(�)(h) + b

(�)
1 (h)xt + b

(�)
2 (h)x

2
t

which can be rewritten using a new variable zt = x2t that captures the square of the global

factor. In compact notation:

r
(�)(h)
t = a(�)(h) +B(�)(h)0ext

where B(�)(h) =
h
b
(�)
1 (h); b

(�)
2 (h)

i0
and ext = [xt; zt]0. That is, interest rates are a¢ ne in the

original global factor xt and its square zt = x2t . Therefore, this quadratic model can be

viewed as an a¢ ne model in the new set of factors given by ext.
15



Similarly, it can be shown that the expected rate of depreciation is also a¢ ne in ext.
Recall that Proposition 1 requires, �rst, the drift of the (log) exchange rate process to be

a¢ ne in this new set of state variables and, second, the process that these variables follow

must be itself an a¢ ne di¤usion. The �rst condition is satis�ed because short rates and the

instantaneous variance of the SDFs are quadratic in xt so they can be expressed in terms

of ext = [xt; zt]. Second, it can be shown that if we apply Itô�s lemma on zt = x2t , then

the joint process for xt and zt is an a¢ ne di¤usion. In particular, the law of motion of the

augmented set of factors ext = [xt; zt] satis�es:
d

�
xt
zt

�
=

�
� 0

�2�� 2�

� ��
�

�2=2�+ �2

�
�
�
xt
zt

��
dt+

�
�

2�
p
zt

�
dWt

Therefore, this model satis�es the two conditions for an expected rate of depreciation.

In brief, the interest rates and the expected rate of depreciation are a¢ ne in a new set

of state variables. Consequently, this one-factor quadratic model can be interpreted as a

two-factor internationally a¢ ne model. Furthermore, the generalization of this result to

the case where there is more than one factor is straightforward and the details can be found

in the appendix. In the general case, zt must include the squares of the original set of state

variables xt and their cross-products. A compact way to do so is to apply the matrix vech

operator, which stacks the elements on and below the main diagonal of a square matrix,

to the matrix given by xtx0t. As a result, quadratic models can be viewed as part of the

internationally a¢ ne framework because they provide interest rates and an expected rate

of depreciation that are a¢ ne in the augmented set of state variables given by ext = [x0t; z0t]0
with zt = vech(xtx0t).

3.2.1 Gaussian Essentially A¢ ne Models

As mentioned before, the Gaussian subfamily of the essentially a¢ ne models introduced

in Du¤ee (2002) provides a su¢ ciently �exible risk premia to explain the puzzles of the

expectations hypothesis of the term structure of interest rates. Therefore, it can potentially

help us to address the forward premium anomaly. These models are characterized by

instantaneous interest rates and prices of risk that are a¢ ne in a set of state variables xt:

r
(�)
t = �

(�)
0 + �

(�)0
1 xt

�
(�)
t = �

(�)
0 + �

(�)
1 xt
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where the state vector xt follow a multivariate Orstein-Uhlenbeck (Gaussian) process:

dxt = �(� � xt)dt+�1=2dWt

Du¤ee (2002) shows that this model generates interest rates that are a¢ ne in the factors

xt. However, notice once again that the instantaneous variance of the SDF �
(�)0
t �

(�)
t is

quadratic in the set of state variables xt. Still, this model can be viewed as a particular

case of the quadratic speci�cation with �(�)2 = 0n�n in equation (19) and therefore it is

subject to the results for quadratic models presented before. That is, the expected rate

of depreciation is a¢ ne in the augmented set of state variables obtained by stacking the

original one and their respective squares and cross-products. An example of such Gaussian

essentially a¢ ne model of currency pricing can be found in Brennan and Xia (2004) and

Dong (2005).

To conclude this section, Table 2 summarizes the theoretical �ndings of this section.

First, the completely a¢ ne framework implies that interest rates and the expected rate of

depreciation are linear (known) functions of a set of state variables. Second, the quadratic

framework implies interest rates and an expected rate of depreciation that is linear in an

augmented set of factors that includes the original set of factors and their squares and

cross-products. Finally, the Gaussian essentially a¢ ne model is in middle ground as the

interest rates are linear, while the expected rate of depreciation is quadratic (or linear in

the augmented set of factors).

4 Empirical Model

4.1 A two factor Gaussian essentially a¢ ne model

In this section, I focus on the estimation of a Gaussian essentially a¢ ne model. Several

reasons justify the choice of this particular model. First, a multivariate Gaussian process

gives the most degree of �exibility to the structure of correlations and conditional means

of the state vector. That means that this model is going to perform at least as well as

the other members of the family of completely a¢ ne models whose general structure is

restricted by requirement that the conditional variance must always be positive (see e.g.

Dai and Singleton, 2000). Moreover, since there is no state variable driving the conditional

variance in this proposed model, there is no need to worry about these variables entering

some non-admissible space where the volatilities are negative. Second, the speci�cation of
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the prices of risk is the same as in the quadratic models, so similar degree of �exibility is

expected in reproducing the forward premium puzzle. Besides and in contrast with these

quadratic models, the Gaussian essentially a¢ ne model generates a one-to-one mapping

from interest rates to the state vector xt, so the estimation exercise is easier and can be

done by quasi maximum likelihood.

Moreover, since the dataset only contains interest rates with maturities up to one year

I focus on a two factor model where these two state variables correspond with the instan-

taneous interest rates in each of the countries. In terms of our general framework this is

translated into: xt = [rt; r
�
t ], �0 = ��0 = 0, � = (1; 0)0 and �� = (0; 1)0; where the joint

process for the short rates is a multivariate Orstein-Uhlenbeck process:

d

�
rt
r�t

�
=

�
�11 �12
�21 �22

���
�1
�2

�
�
�
rt
r�t

��
dt+

�
�11 0
�21 �22

�
dWt (22)

and the prices of risks are assumed to be a¢ ne (known) functions of these state variables

�t =

�
�01
�02

�
+

�
�11 �12
�21 �22

�
xt (23)

��t =

�
��01
��02

�
+

�
��11 ��12
��21 ��22

�
xt

4.2 Estimation

Under the above assumptions and given the results presented in the previous section, both

domestic and foreign interest rates are a¢ ne functions of the set of state variables given by

xt = [rt; r
�
t ]
0:

r
(h)
t = A(h) +B(h)0xt (24)

r
�(h)
t = A�(h) +B�(h)0xt

and the expected rate of depreciation is quadratic in the same set of state variables or, if

preferred, linear in the augmented set of factor given by ext = [x0t; z0t]0 with zt = vech(xtx0t)
q
(h)
t = C(h) + eD(h)0ext (25)

In the (hypothetical) absence of exchange rate data, the estimation of this model can be

done by maximum likelihood (ML) exploiting that the conditional distribution of the state

variables is Gaussian. For example and following the usual convention in the literature

(see e.g. Dai and Singleton, 2002; and Du¤ee 2002), I assume that some of the interest
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rates are observed without measurement error, while the interest rates on the remaining

maturities are assumed to be measured with serially uncorrelated, zero-mean errors. In

particular, I assume that domestic and foreign one month interest rates do not contain any

source of measurement error, which allows me to recover the state variable xt = [rt; r�t ]
0 by

inversion of the one-to-one mapping given in equation (24) evaluated at (time is measured

in months) h = 1:

xt = H
�1
1 (r

(1)
t �H0) (26)

where r(1)t = [r
(1)
t ; r

�(1)0
t ], H0 = [A(1); A�(1)]0 and H1 = [B(1); B�(1)]0.

Given the value of the state vector xt obtained in equation (26), the model-implied

interest rates for the remaining maturities (three, six and twelve months) can be computed.

Denote by r(�1)t a vector that contains the observed domestic and foreign interest rates on

these remaining maturities, and denote their implied counterparts by br(�1)t . Then, the

measurement error is �t = r
(�1)
t � br(�1)t and let it be i.i.d. zero-mean normally distributed

with density given by f�(�t).

The loglikelihood has, then, two parts. First, the contribution of the interest rates that

are observed without measurement error. This can be computed using that the conditional

distribution of the state variables xt is given by a �rst order vector autorregresion with

Gaussian innovations:

fx(xt+1jxt) � N [�t;
]

where

�t = (I�e��)� + e��xt

vec [
] = [�
 I + I 
�]�1
�
I 
 I � e�� 
 e��

�
vec(�)

Then, the conditional density of r(1)t can be obtained by a change of variable:

fr(1)
�
r
(1)
t+1

��� r(1)t � = 1

jH1j
fx (xt+1jxt)

Second, we have assumed that �t is normal i.i.d. Thus, the loglikelihood of an observa-

tion at time t is

lt(�) = log fr(1)
�
r
(1)
t+1

��� r(1)t �+ log f�(�t)
where � is a vector that contains the parameters of the model. The loglikelihood of

the whole sample is constructed as the usual sum of these log densities over the sample
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Lt(�j r(1)1 ) =
P

t lt(�) where, for simplicity, I have conditioned on the �rst observation of

the one-month interest rates.

Still, this approach does not use the information that exchange rates contain on the

ratio of the SDFs (see equation 7). Therefore and to exploit such information, notice that

the assumption of rational expectations in foreign exchange markets allows me to write:

�st+1 = Et [�st+1] + vt+1 (27)

where vt+1 is a rational expectation forecasting error with zero mean and uncorrelated

with any variable in the time t information set. Traditionally, the empirical literature in

international �nance has combined this last equation with the uncovered interest parity

to obtain a testable implication of this theory (see Section 2). Instead, note that the

assumption on the absence of measurement errors in the one-month interest rates implies

that the �backed out�state variables xt and any function of those, such as zt = vech(xtx0t),

belong to the time t information set. Therefore, I can combine equation (27) with (25) to

obtain:

�st+1 = C(1) + eD(1)0ext + vt+1 (28)

where again, ext = [x0t; z
0
t]
0. This equation can form the basis of an estimation by quasi

maximum likelihood (QML) if we assume that vt is N(0; �2v) and independent ofWt and the

measurement errors �t. The parameter �2v can be interpreted as a general characterization

of the mean squared error of the (restricted) projection of the rate of depreciation on

the factors and their squares. In this case, the loglikelihood has a third component that

captures the contribution of the exchange rates:

lt(�) = log fr(1)
�
r
(1)
t

��� r(1)t�1�+ log f�(�t) + log fv(vt)
and the estimated parameter b� can be obtained maximizing the loglikelihood of the whole
sample Lt(�j r(1)1 ) =

P
t lt(�).

QML estimation can be viewed as GMM estimation based on the scores of the quasi

likelihood function (its �rst derivatives with respect to the parameter vector); and for the

Gaussian model presented in this section the scores can be computed algebraically (see

Harvey, 1989 pp 140-2 for a related example). Another advantage of this model is that it

is possible to show that both the covariance matrix of the measurement errors and the �2v,

that is the mean squared error of the (restricted) projection of the rate of depreciation,
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can be concentrated out of the likelihood function. In particular, the estimates of the these

two objects are b
� = T�1
Pb�tb�0t and b�2v = T�1

Pbv2t respectively. Moreover, the QML
approach allows us to compute the standard errors of the parameters using the standard

GMM formulae (see Hamilton, 1994 pp 428-9).

Although somewhat extreme, the assumption on the independence of the error term vt

can be justi�ed from either estimation simplicity or from the empirical observation that

a predominant portion of the exchange rate movement is independent of the interest rate

movements of either country. For example, Lothian and Wu (2003) point out that the

forward premium regressions usually show very low R2 statistics. This feature can be

accounted in our model once we allow the pricing kernels to be driven by an additional

source of risk that is orthogonal to the forces driving the short rates11. Still, the expressions

for the expected rate of depreciation in equation (14) are valid because this new source of

risk is orthogonal to the interest rates. Therefore, the estimation is based on the right

conditional moments so this approach is expected to deliver consistent estimates of the

parameters of the model.

4.3 Results

Table 3 presents the QML estimates of the two factor Gaussian essentially a¢ ne model,

along with robust estimates of the corresponding standard errors. Panel a contains the

results of the estimation exercise for the U.S. Dollar �Sterling Pound, while panel b contains

those of the U.S. Dollar �Canadian Dollar. Since the objective of this study is to investigate

the ability of a¢ ne models in the out-of-sample prediction of exchange rates, I follow Dai

and Singleton (2002) and Du¤ee (2002) to re-estimate the model after setting to zero those

coe¢ cients with largest relative standard errors (�12, �21, �11, �
�
02 for the pair U.S. Dollar �

Sterling Pound and �12, �21, �11, �12, �01, �
�
21, �

�
22, �

�
02 for the pair U.S. Dollar �Canadian

Dollar). This approach will help us in reducing the large number parameters that the

model contains and therefore will reduce excessive parameter estimation uncertainty that

may adversely a¤ect the out-of-sample forecasts performance of this model. For the sake

of saving space, I only report the results for these restricted models.

11Brandt and Santa-Clara (2002) attribute this additional source of risk to market incompleteness while
Dewachter and Maes (2001) or Leippold and Wu (2003) assume that bond returns do no necessarily span
the returns in the foreign exchange market and, therfore, interpret this orthogonal risk factor as related to
factors outside the bond market (e.g. stocks).
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The results for the U.S. Dollar �Sterling Pound (panel a) indicates that the process for

the short rates is mean reverting. However, this mean-reversion is slow (both elements in

the diagonal of � are positive but close to zero). The British short rate seems to revert to

a higher level than its American counterpart and, in addition, it is more volatile. Since the

process that short rates follow is Gaussian, it is possible for them to take on negative values

with positive probability. Still, I �nd that, with estimated parameters, the probability of a

negative short rate is small: 2.59% and 0.30% for the case of the U.S. and U.K. respectively.

The implied yield curve for the U.S. is upward sloping with an implied long-term yield of

17.75%. On the contrary, the implied yields curve for the U.K. is downward sloping with

long-term yields reaching as high as 9.54%. These seem to be reasonable numbers. First,

Backus, et al. (2001) reports that their estimates implied long-term yields reaching as high

as 80%. Second, note that the estimation is done without interest rate data with maturities

higher than one year, being those the ones that can potentially help to anchor these long-

term yields. In addition, this result is consistent with an (average) spread between the one

year and the one month interest rate that is positive for the case of the U.S. while negative

for the case of the U.K. (see Table 1).

Focusing on the estimates of the prices of risk, notice that almost all the elements of

the matrices � and �� in the prices of risk are statistically di¤erent from zero. Therefore,

and in the line of the work in Dai and Singleton (2002), extending the speci�cation of the

prices of risk seems to be an important factor for the estimation of the model. In addition,

this model is able to reproduce the forward premium puzzle. Table 4 (panel a) presents

the term structure of forward premium regression slopes implied by the model. These

are computed using the closed-form formulae derived in the appendix and by treating the

estimates of the two factor model as truth. The sample OLS estimates of these slopes are

reproduced here again for the sake of comparison. The model-implied slopes are negative

and reasonably close to their sample counterparts. However, the model tends to generate

uncovered interest parity slopes that are more negatives than the ones that we estimated

using standard OLS techniques. Therefore, the results produced by this model for the case

of the U.S. Dollar �Sterling Pound do not seem to be highly unreasonable.

The results for the U.S. Dollar �Canadian Dollar are presented in Table 3, panel b.

Again, the process for the short rates is mean reverting, and the Canadian short term seems

to revert to a higher level than its American counterpart. However, and if compared with

22



the estimates obtained for the U.S. Dollar �Sterling Pound, the long run mean for the

short rates (given by �) is unusually high. In fact, both implied yield curves for the U.S.

and Canada are downward sloping with implied long-term yields unreasonable low: 1.03%

and 3.84% for U.S. and Canada, respectively. On the contrary, the probability of having a

negative short rate is almost zero regardless the choice of the country.

Still, the model is able to reproduce the forward premium anomaly. Again, almost all

the elements of the matrices � and �� are statistically di¤erent from zero and the model-

implied slopes are negative (Table 4, panel b). The model underestimates (in absolute

terms) the slope for the case of the 1-month and 3-month contracts, while the implied

slope is more negative than the OLS counterparts for the 6-month and 12-month contracts.

Therefore, and contrary to the results for the pair U.S. Dollar �Sterling Pound, here it

seems that the good �t of the exchange rate is done at the expense of the interest rates.

4.4 Out-of-Sample Forecasting

In this subsection, an out-of-sample forecasting experiment is conducted over the period

January 1998 �December 2004 (7 years) to evaluate the performance of the Gaussian

essentially a¢ ne term structure model estimated and described in the previous section.

These forecasts are computed according to the recursive procedure employed in Clarida

and Taylor (1997) and Clarida et al. (2003): at each date t, the model is re-estimated

using data up to and including time t and then dynamic forecasts of the spot exchange rate

up to t+ 12. These forecasts are computed using equation (14).

The �rst column in table 5 presents the results of the accuracy of these forecasts using

the Root-mean-square error (RMSE) and Mean-absolute-error (MAE) criteria. Panel a

contains the results of the forecasting exercise for the U.S. Dollar �Sterling Pound, while

panel b contains those of the U.S. Dollar �Canadian Dollar. In addition, this table also

presents a comparison of these forecasts with those generated by three alternative bench-

marks: a random walk (RW), a vector autoregression on the forward premia and the rate of

depreciation (VAR), and the forward premium regression (OLS). Comparing our forecasts

with those produced by the random walk model can be motivated by the fact that the

random walk model is considered the usual metric in which exchange rate forecasts have

been evaluated since the original work of Meese and Rogo¤ (1983a, b). However, Clarida

and Taylor (1997) show that if one uses a linear vector error correction (VECM) model in
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the spot and forward exchange rates, it is possible to obtain out-of-sample forecasts of spot

exchange rates that beat the random-walk model. Therefore, we include as a second bench-

mark the forecasts obtained by the use of a vector autoregression (VAR) on the forward

premia and the rate of depreciation12 where the number of lags in the VAR is chosen to

be equal to p = 2 for UK and p = 1 for Canada as suggested by the Bayesian Information

Criteria (BIC)13. Finally, and for completeness, I also include the forecast produced by a

standard ordinary least squares regression of the rate of depreciation onto a constant and

the lagged forward premium.

Following Clarida and Taylor (1997), I report the level of the RMSE and the MAE for

the a¢ ne term structure model, while for the alternative forecasts the results are expressed

as the ratio of the RMSE or the MAE to that obtained by the alternative method. For

example, the level of the RMSE of the a¢ ne forecast for the U.S. Dollar-Sterling Pound rate

one year ahead is 0.0496, while the ratio of this to the forecast obtained using a random-

walk forecast is 0.637. That means a 36.3% reduction in RMSE by using the forecasts

produced by the a¢ ne term structure model as opposed to the random walk.

The results for the U.S. Dollar � Sterling Pound (panel a) indicate that the a¢ ne

term structure model produces the best out-of-sample forecasts among the four competing

models. The linear vector autoregression and the random walk model rank second and

third respectively. On the other side of the spectrum, the forward premium regression

forecasts fails to outperform the random walk at all the four horizons. In addition, the

improvement of the a¢ ne term structure model forecasts with respect to those obtained

from alternative models grows with the forecast horizon. For example, the improvement in

RMSE with respect to the random-walk at the 1-month horizon is 2.2%, at the 3-month

horizon is 9.7%, at the 6-month horizon is 18.2% and, �nally, at the 12-month horizon is

36.3%.

That the VAR forecasts are also able to beat the random walk is consistent with the

results found by Clarida and Taylor (1997). However, these gains are smaller than those

reported by those authors. For example, the improvement of the forecasts in RMSE at the

one year horizon produced by the VAR if compared with those of a random walk is only a

12This approach is equivalent to the vector error correction model (VECM) in Clarida and Taylor (1997)
if we impose that the spot and the forward exchange rates are cointegrated with known cointegration vector
(1, -1). See i.e. Mark (2001), pp 51.
13The results provided below are qualitatively similar to those obtained with other choices of the number

of lags.
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2.4%.

Similarly to what it is found for the U.S. Dollar - Sterling Pound exchange rate, the

a¢ ne term structure model produces the best out-of-sample forecasts of the U.S. Dollar �

Canadian Dollar among the four competing models (panel b). However, the VAR model

fails to outperform the random walk forecasts at all the horizons. Thus, the random walk

model ranks second and the VAR and forward premium forecasts rank third and fourth,

respectively. Again, the improvement of the a¢ ne term structure model forecasts with

respect to those obtained from alternative models grows with the forecast horizon. In

particular, at the 1-month horizon, the improvement in RMSE with respect to the random-

walk is 1.6%, at the 3-month horizon is 4.0%, at the 6-month horizon is 6.2%, and at the

12-month horizon is 9.4%. Being this gain quantitatively smaller than the one reported

for the U.S. Dollar - Sterling Pound exchange rate, it must be noted that this model is

successful in beating the random walk model while the linear VAR is not. In particular, at

the 1-month horizon, the improvement in RMSE with respect to the VAR is 2.5%, at the

3-month horizon is 5.4%, at the 6-month horizon is 8.0%, and at the 12-month horizon is

13.1%.

These results extend those of Clarida and Taylor (1997) who, using a linear VECM

model in the spot and forward exchange rates, were able to obtain out-of-sample forecasts

of spot exchange rates that beat the random-walk model. In addition, the results presented

in this paper also extend those in Ang and Piazzesi (2003) who, imposing the cross-equation

restrictions from no-arbitrage, are able to beat the random walk when they forecast bond

yields, again, out-of-sample. Therefore, imposing the cross-equation restrictions from no-

arbitrage can help us in extracting information contained in the term structure of forward

exchange premia that is useful to forecast exchange rates.

5 Final Remarks

This paper provides an arbitrage-free empirical model that produces exchange forecasts

that are superior to those produced by purely time-series method such as a random-walk

model or a vector autoregression on the forward premiums and the rate of depreciation. The

intuition behind this success is that imposing no-arbitrage restrictions in the estimation of

the joint dynamics of interest and exchange rates reduces the large number of parameters

that characterize traditional time series models. Consequently, it also reduces excessive
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parameter estimation uncertainty that may adversely a¤ect the out-of-sample forecasting

performance of a purely time-series model.

Several questions are left for further research. The �rst one is the role of nonlinearities.

Clarida, et al. (2003) shows that there is strong evidence of the presence of nonlinearities

in the joint behaviour of interest and exchange rates that can be used to outperform the

forecasts obtained by using linear methods. Therefore, imposing no-arbitrage restrictions in

non-linear models can potentially improve over the results presented in this paper. A second

possible extension is the use of an arbitrage-free joint model of interest, exchange rates and

macro variables to extract the information that interest rates and macro variables contain

about the future evolution of exchange rates. Along these lines, Dong (2005) presents a

structural VAR identi�ed by the assumption of the absence of arbitrage where the macro

variables correspond to output gap and in�ation; and where the correlation between the

model-implied rate of depreciation and the data is over 60%. However, this author does

not conduct an out-of-sample prediction exercise. Another possible extension is the use of

commodity prices, such as oil prices, as another macro variable that can potentially help

us to predict exchange rate movements, especially for a commodity currency such as the

Canadian Dollar (see Amano and Van Norden, 1998 and Chen and Rogo¤, 2003).
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Appendix

A Proof of Proposition 1

In this appendix, I show that if the drift of the log exchange rate st is linear in a set of
state variables xt, and xt follows an a¢ ne di¤usion, then the expected rate of depreciation
is a (known) linear function of the state vector xt. However, to show this point I need one
previous result.

Lemma 2 If the process xt follows the a¢ ne di¤usion given by (13) then

Et

�Z t+h

t

x�d�

�
= �h+��1

�
I � e��h

�
[xt � �] (29)

Proof. First note that (see e.g. Fackler, 2000) when xt follows an a¢ ne di¤usion:

Etxt+h = � + e
��h(xt � �)

Second, take expectations respect to the integral form of (13):

Et

�Z t+h

t

dx�

�
= �� +�Et

�Z t+h

t

x�d�

�
Finally, notice thatEt

hR t+h
t

dx�

i
= Etxt+h�xt and solve this last equation forEt

hR t+h
t

x�d�
i

to obtain (29)
Note that the variable inside the conditional expectation y(h)t =

R t+h
t

x�d� is a �ow
variable. In particular, there has been a lot of attention in obtaining the process that
a set of discretely sampled data follows when these observations (whether stock or �ow,
or a combination of both) have been generated by an underlying continuous time model
(see, e.g. Bergstrom 1984). However, this literature has relied on the assumption that
this underlying continuous time process is a multivariate version of the Orstein-Uhlenbeck
process. Here, the distributional assumption is relaxed to allow for an a¢ ne di¤usion at the
cost of restricting the predictions only to the conditional expectation of the �ow variable
(instead of the whole distribution of y(h)t ). Nonetheless, this result is enough to prove the
linearity of the expected rate of depreciation because the expected rate of depreciation
satis�es

Et [st+h � st] = Et
�Z t+h

t

ds�

�
= 0h+ 

0Et

�Z t+h

t

x�d�

�
and once we substitute (29) into this last expression we obtain the desired result.
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B Closed-form Expressions of the Implied Uncovered
Interest Parity Regression Slope

For expositional purposes collect the expected rate of depreciation and the forward premia
in a vector y(h)t = [q

(h)
t ; p

(h)
t ]. In addition, denote 
(h) = V ar[y

(h)
t ] as the unconditional

variance of y(h)t .
The de�nition of the (population) uncovered interest parity regression slope in equation

(1) is

b(h) =
Cov[st+h � st; p(h)t ]

V ar[p
(h)
t ]

=
Cov[q

(h)
t ; p

(h)
t ]

V ar[p
(h)
t ]

where the second equality comes from the law of iterated expectations. For convenience,
rewrite this expression as:

b(h) =
e01
(h)e2
e02
(h)e2

where e01 = (1; 0) and e
0
2 = (0; 1). The numerator of this equation is the covariance between

the expected rate of depreciation and the forward premia, while the denominator is the
variance of the forward premia.
However, given that y(h)t is a linear function of the states xt:

y
(h)
t = 	0(h) +	1(h)

0xt

with

	0(h) =

�
C(h)

A(h)� A�(h)

�
	1(h) =

�
D(h)

B(h)�B�(h)

�
it is straightforward to realize that the unconditional variance of y(h)t is related to the
unconditional variance of the factors in the following way:


(h) = V ar[z
(h)
t ] = 	1(h)

0V ar[xt]	1(h)

Therefore, computing the implied uncovered interest parity regression slope amounts to
compute the unconditional variance of the factor xt. If the state-vector xt follows an a¢ ne
di¤usion (as in the case of the a¢ ne models of currency pricing), we can use the explicit
formulae for the unconditional variance provided in Fackler (2000). Specializing his results
to our case, one obtains:

vec [V ar(xt)] =

[�
 I + I 
�]�1
�
�1=2 
�1=2

�
vec [diag [a+B�]]
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being

a =

26664
�1
�2
...
�N

37775 and B =

26664
�01
�02
...
�0N

37775
For the quadratic models we can exploit that the unconditional distribution of the

original state-vector xt is Gaussian with mean � and variance such that vec [V ar(xt)] =
[�
 I + I 
�]�1 vec(�). Still, we need the covariances between xt and zt = vech [xtx0t].
The elements of this matrix can be computed using that if three variables x, y and z are
jointly normally distributed then:

Cov(xy; z) = �xCov(y; z) + �yCov(x; z)

Finally, the variance-covariance matrix of zt can be computed using that if four variables
x, y, u and v are jointly normally distributed then:

Cov(xy; uv) = �x�uCov(y; v) + �y�uCov(x; v)+

�x�vCov(y; u) + �y�vCov(x; u)+

Cov(y; u)Cov(x; v) + Cov(x; u)Cov(y; v)

C From Quadratic to A¢ ne in an Augmented Set of
State Variables

Quadratic models of the term structure generate interest rates that are quadratic (known)
functions of a set of state variables denoted by xt = [x1t; x2t; : : : ; xnt]0:

r
(�)(h)
t = A(�)(h) +B(�)(h)0xt + x

0
tC

(�)(h)xt

where the coe¢ cients A(�)(h) 2 R, B(�)(h) 2 Rn and C(�)(h) 2 Rn�n solve two systems of
ordinary di¤erential equations. As claimed in the paper, this expression can be expressed
as an a¢ ne function of the original set of state variables and a new set of state variables
zt = vech [xtx

0
t] that includes the squares of the original ones as well as the corresponding

cross-products. To realize why this is true, �rst note that for a given n�n matrix � it can
be shown that

x0t�xt = tr(x
0
t�xt) = tr(�xtx

0
t)

Then, use that tr(�xtx0t) = vec(�)0vec(xtx
0
t); and notice that xtx

0
t is a n � n symmetric

matrix so that, vec(xtx0t) = Dnvech(xtx
0
t), where Dn is the duplication matrix and whose

details can be found in pp. 464-5 of Lütkepohl (1993). This makes:

x0t�xt = vec(�)
0Dnvech(xtx

0
t) = vec(�)

0Dnzt (30)
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If we specialize this result to the case when � =B(�)2 (h), it delivers interest rates that
are (known) a¢ ne in the augmented set of state variables given by ext = [x0t; z

0
t]
0 with

zt = vech(xtx
0
t):

r
(�)(h)
t = A(�)(h) +B

(�)
1 (h)

0xt +
h
vec

�
B
(�)
2 (h)

�i0
Dnzt

By a similar reasoning, it can be shown that the expected rate of depreciation is also
a¢ ne in this augmented set of factors. This property requires the drift of the (log) exchange
rate process to be a¢ ne in this new set of state variables and the process that these variables
follow must be itself an a¢ ne di¤usion. First, we can express the short rates and the
instantaneous variance of the domestic and foreign log SDF as a¢ ne functions of xt and
zt using equation (30) with � = �

(�)
2 and � = �(�)0�(�) respectively. This implies that the

drift of the (log) exchange rate process is a¢ ne:

Etdst = (0 + 
0
xxt + 

0
zzt)dt (31)

with

0 = (�0 � ��0) +
1

2
(�00�0 � ��00 ��0)

x = (�1 � ��1) + (�00�� ��00 ��)

z =

�
vec(�2 � ��2 +

1

2
(�0�� ��0��))

�0
Dn

or in compact form:
Etdst = (0 + e 0ext)dt (32)

with ext = [x0t; z0t]0 and e = [ 0x; 0z]0.
Second, it can be shown that if we apply Itô�s lemma on zt = vech [xtx0t] then the joint

process for xt and zt is an a¢ ne di¤usion (see appendix B in Cheng and Scaillet, 2002). In
particular, the law of motion of the augmented set of factors ext satis�es:

d

�
xt
zt

�
=

�
� 0
�zx �zz

� ��
�
�z

�
�
�
xt
zt

��
dt+

�
�1=2

�z(xt)
1=2

�
dWt

or in compact notation:
dext = e�(e��ext)dt+ e�(xt)1=2dWt

and where the drift is linear with:

�zz = 2D
+
n (�
 In)Dn

�zx = �2D+
n (�� 
 In)

�z = �
�1
zz (vech(�)��zx�)

being D+
n the Moore-Penrose inverse of matrix Dn: D+

n = (D
0
nDn)

�1D0
n.
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In addition, the di¤usion term satis�es:

�z(xt)
1=2 = 2D+

n (�
1=2 
 xt)

which implies a volatility matrix e� whose elements are a¢ ne in xt and xtx0t (and therefore,
a¢ ne in xt and zt):

e� = � � 2(�0 
 x0t)D+
n

2D+
n (�
 xt) 4D+

n (�
 xtx0t)D+0
n

�
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Table 1
Summary Statistics for All Variables

Panel a: Summary Statistics
Mean Std. Deviation Autocorr.

I. Depreciation Rate st+1 � st
Sterling Pound -0.940 40.073 0.080
Canadian Dollar -1.557 15.761 -0.059

II. Interest Rates rt
U.S.
1-month 7.966 3.558 0.969
3-months 8.046 3.488 0.973
6-months 8.103 3.372 0.974
12-months 8.073 3.020 0.977

U.K.
1-month 10.571 3.437 0.959
3-months 10.526 3.294 0.961
6-months 10.388 3.082 0.963
12-months 10.100 2.715 0.965

Canada
1-month 9.142 3.628 0.978
3-months 9.199 3.513 0.979
6-months 9.183 3.319 0.978
12-months 9.069 2.987 0.978

Data are monthly and the sample is January 1976 to December 1997 (252 observa-
tions). All variables are measured in percentage points per year, and monthly rates of
depreciation are annualized by multiplying by 1,200.



Panel b: Forward Premium Regressions
a(h) b(h) H0 : b

(h) = 1
I. Sterling Pound
1-month -5.760 -1.840 8.996

(3.044) (0.947) [0.003]
3-months -4.700 -1.505 7.215

(2.937) (0.933) [0.007]
6-months -4.218 -1.361 7.573

(2.647) (0.858) [0.006]
12-months -3.101 -0.817 6.358

(2.249) (0.721) [0.012]

II. Canadian Dollar
1-month -3.172 -1.351 32.337

(0.904) (0.414) [0.000]
3-months -2.526 -0.827 21.941

(0.818) (0.390) [0.000]
6-months -1.927 -0.425 16.349

(0.691) (0.352) [0.000]
12-months -1.680 -0.240 8.856

(0.622) (0.417) [0.003]

Panel c: Wald Test of the Joint Equality
of the Four Forward Premium Regression Slopes

H0 : b
(h) = 1 8h = 1; 3; 6; 12

Sterling Pound 12.990
[0.011]

Canadian Dollar 36.821
[0.000]

Data are monthly and the sample is January 1976 to December 1997 (252 observa-
tions). Forward premium regressions are of the form st+h � st = a(h) + b(h)p(h)t + ut+h
where p(h)t is the interest rate di¤erential r(h)t �r

�(h)
t (also known as the forward premium).

This equation is estimated by GMM and Newey-West standard errors are presented in
parenthesis. The last column H0 : b(h) = 1 in panel b presents the value of the Wald test
of the null hypothesis that the slope coe¢ cient is equal to one. In large samples, this
test is distributed as a �2 with one degree of freedom. Panel c presents an equivalent
Wald test of the null hypothesis that all the four slope coe¢ cienst are equal to one. In
large samples, this test is distributed as a �2 with four degrees of freedom. P-values are
presented in brackets.



Table 2
Summary of the Properties of Internationally A¢ ne Models

Interest Rates r(h)t , r
�(h)
t

Linear Quadratic
Expected Linear �Completely�
Rate of A¢ ne DTSM

Depreciation Quadratic Gaussian �Essentially� Quadratic
q
(h)
t A¢ ne DTSM DTSM



Table 3
Estimates of the Two Factor Essentially A¢ ne Model:

Panel a: U.S. Dollar - Sterling Pound

Index Number (i)
Parameter 1 2

�1i 0.0238 0
(0.0079)

�2i -0.0785 0.0935
(0.0324) (0.0266)

�i 0.6745 0.9006
(0.1977) (0.1832)

�1i 0.0756 0
(0.0082)

�2i 0 0.0862
(0.0065)

�1i 0 0.1261
(0.0527)

�2i -2.0673 -0.7399
(0.8182) (0.6636)

�0i -0.2412 5.9025
(0.0637) (0.9747)

��1i 1.1885 0.6846
(0.6829) (0.3947)

��2i 1.3813 -0.4585
(0.6970) (0.3224)

��0i -5.8778 0
(0.9960)

This table presents quasi maximum likelihood (QML) estimates of the two factor
Gaussian essentially a¢ ne model de�ned in equations (22) and (23). These estimates
are based on monthly observations of the rate of depreciation of the U.S. Dollar - Sterling
Pound and 1, 3, 6 and 12-month Eurocurrency interest rates in the U.S. and U.K. The
sample period is January 1976 to December 1997 (252 observations). American variables
correspond with the index number 1 and British ones correspond with the number 2.
Robust standard errors are provided in parenthesis.



Table 3
Estimates of the Two Factor Essentially A¢ ne Model:

Panel b: U.S. Dollar - Canadian Dollar

Index Number (i)
Parameter 1 2

�1i 0.0458 0
(0.0037)

�2i -0.1995 0.1999
(0.0283) (0.0238)

�i 1.0570 1.1795
(0.0589) (0.0733)

�1i 0.0639 0
(0.0063)

�2i 0 0.0637
(0.0043)

�1i 0 0

�2i 16.2445 -12.2519
(3.8478) (2.8206)

�0i 0 -1.9329
(1.1279)

��1i 16.2852 -12.2643
(3.8170) (2.8048)

��2i 0 0

��0i -1.8498 0
(1.1153)

This table presents quasi maximum likelihood (QML) estimates of the two factor
Gaussian essentially a¢ ne model de�ned in equations (22) and (23). These estimates are
based on monthly observations of the rate of depreciation of the U.S. Dollar - Canadian
Dollar and 1, 3, 6 and 12-month Eurocurrency interest rates in the U.S. and Canada.
The sample period is January 1976 to December 1997 (252 observations). American
variables correspond with the index number 1 and Canadian ones correspond with the
number 2. Robust standard errors are provided in parenthesis.



Table 4
Implied Forward Premium Regression Slopes

Panel a: US Dollar - Sterling Pound
1-month 3-month 6-month 12-month

OLS -1.840 -1.505 -1.361 -0.817
Implied -2.001 -1.945 -1.878 -1.788

Panel b: US Dollar -Canadian Dollar
1-month 3-month 6-month 12-month

OLS -1.351 -0.827 -0.425 -0.240
Implied -0.578 -0.536 -0.481 -0.411

This table presents the term structure of forward premium regression slopes implied
by the two factor Gaussian essentially a¢ ne model de�ned in equations (22) and (23).
These are computed using the closed-form formulae derived in the appendix and by
treating the estimates displayed in table 3 as truth. The sample OLS estimates of these
slopes are reproduced again for the sake of comparison.



Table 5
Comparison of Out-of-sample Forecasting Performance

Panel a: US Dollar - Sterling Pound
A¢ ne VAR(2) RW OLS
(level) (ratio) (ratio) (ratio)

Root Mean Square Error (RMSE)
1-month horizon 0.0205 0.975 0.978 0.980
3-month horizon 0.0300 0.925 0.903 0.909
6-month horizon 0.0403 0.845 0.819 0.820
12-month horizon 0.0496 0.653 0.637 0.584

Mean Absolute Error (MAE)
1-month horizon 0.0167 0.971 0.959 0.975
3-month horizon 0.0255 0.999 0.952 0.988
6-month horizon 0.0312 0.830 0.828 0.818
12-month horizon 0.0414 0.666 0.632 0.601

Panel b: US Dollar - Canadian Dollar
A¢ ne VAR(1) RW OLS
(level) (ratio) (ratio) (ratio)

Root Mean Square Error (RMSE)
1-month horizon 0.0189 0.975 0.984 0.977
3-month horizon 0.0343 0.946 0.960 0.944
6-month horizon 0.0480 0.920 0.938 0.914
12-month horizon 0.0626 0.847 0.907 0.813

Mean Absolute Error (MAE)
1-month horizon 0.0150 0.959 0.967 0.965
3-month horizon 0.0277 0.976 0.995 0.973
6-month horizon 0.0363 0.932 0.933 0.935
12-month horizon 0.0467 0.869 0.887 0.824

This table presents the results of the out-of-sample forecasting exercise during the
last seven years of the sample (January 1998 - December 2004). For the two factor
Gaussian essentially a¢ ne model the RMSE or the MAE is expressed in levels. For the
alternative forecasts the RMSE or the MAE is expressed as the inverse of its ratio to
the correspoding �gure for the a¢ ne model. Therefore, a �gure less than one indicates
superior relative performance by the VECM model.




