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Abstract 

In the Canadian large value payment system an important goal is to understand how 
liquidity is transferred through the system and hence how efficient the system is in 
settling payments. Understanding the structure of the underlying network of relationships 
between participants in the payment system is a crucial step in achieving the goal. 
 
The set of nodes in any given network can be partitioned into a number of groups (or 
“communities”). Usually, the partition is not directly observable and must be inferred 
from the observed data of interaction flows between all nodes. In this paper we use the 
statistical model of Čopič, Jackson, and Kirman (2007) to estimate the most likely 
partition in the network of business relationships in the LVTS. Specifically, we estimate 
from the LVTS transactions data different “communities” formed by the direct 
participants in the system. 
 
Using various measures of transaction intensity, we uncover communities of participants 
that are based on both transaction amount and their physical locations. More importantly 
these communities were not easily discernible in previous studies of LVTS data since 
previous studies did not take into account the network (or transitive) aspects of the data. 

JEL classification: C11, D85, G20 
Bank classification: Payment, clearing, and settlement systems; Financial stability 

Résumé 

Il est important de bien saisir comment les liquidités transitent dans le Système de 
transfert de paiements de grande valeur (STPGV) canadien et, ainsi, d’évaluer 
l’efficience avec laquelle les paiements sont réglés. Pour ce faire, il est essentiel de 
comprendre la structure du réseau de relations sous-jacent qui lie entre eux les 
participants au système. 
 
Les nœuds que comporte un réseau, quel qu’il soit, se partagent en un certain nombre de 
groupes (ou « communautés »). Le plus souvent, cette répartition n’est pas directement 
observable et doit être déduite des données observées sur les interactions entre tous les 
nœuds. Dans notre étude, nous utilisons le modèle statistique de Čopič, Jackson et 
Kirman (2007) pour estimer la répartition la plus probable des nœuds du réseau de 
relations opérationnelles à l’intérieur du STPGV. Plus précisément, nous cernons, à partir 
des données sur les opérations, les différentes communautés que forment les participants 
directs au système. 
 
En faisant appel à diverses mesures de l’intensité des opérations, nous mettons au jour 
des communautés de participants fondées tant sur la valeur de leurs opérations que sur 
leur emplacement géographique. Il s’agit là d’une avancée importante, car les études 
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antérieures sur les données du STPGV permettaient difficilement de discerner les 
communautés du fait qu’elles ne tenaient pas compte des aspects transitifs des données. 

Classification JEL : C11, D85, G20 
Classification de la Banque : Systèmes de paiement, de compensation et de règlement; 
Stabilité financière 

 

 



1 Introduction

The linkages between participants in a payment system are of interest to payment

system designers and regulators for two main reasons. First, it is through these

links that financial contagion could potentially spread.1 Second, the flow of liquidity

between participants is affected by the system of linkages between participants2. In

this paper we use a dataset of transactional level data between direct participants

in the Canadian Large Value Transfer System (LVTS) to estimate a simple model of

the underlying structure of business links between LVTS participants.

The key contribution of this paper is the identification of different partitions of

the set of LVTS direct participants who transact with each other, within the same

group (i.e. the same component of a partition or the same “community”), more

intensively than with any participant outside the community. Using two measures

of transaction intensity that depend on average and maximum transaction linkages,

we uncover communities of participants that are based on both transaction amount

and their physical locations. More importantly, part of the community structure

found in this paper is not easily discernible in previous studies of LVTS data since

previous studies do not take into account the network (or transitive) aspects of the

data. This implies that two banks which are similar in other observable ways, but

belong to different communities, may have very different impacts on the LVTS due to

their relative importance in their communities. This study adds to the literature on

network topology in payment systems pioneered by Soramaki, Bech, Arnold, Glass,

and Beyeler (2007).

We apply the model of Čopič, Jackson, and Kirman (2007) to LVTS data us-

ing a Bayesian implementation.3 In the model, the probabilities of system direct

participants forming a link within a group and across different groups are assumed

to follow binomial distributions. Posterior densities of these probabilities are con-

structed based on both observed transactions between each pair of participants and

1See for example the work of Allen and Gale (2000). Bech and Garratt (2006) also show that the
degree of interconnectedness between banks can affect the resiliency of a payment system.

2Recent work by O’Conner, Chapman, and Millar (2008) also makes this point.
3An alternative methodology to discover network structure developed by Bergstrom (2007) uses

a minimum descriptive approach to describe the structure of the network.
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a potential maximum capacity of bilateral transactions (that could have been ob-

served). A Markov chain Monte Carlo (MCMC) sampler is then used to compare all

different partitions of the network probabilistically.

Taking a network view allows us to account for features that observed bilat-

eral payment flows cannot take into account. For example consider four banks

(A,B,C,D). It could be that A and D are the largest banks in the system ac-

cording to the transaction volume. But by looking at all the flows in system, it may

be that A, B, and C send the majority of their flows to one of the other two banks in

this triad. In general, we would conclude that banks A and D are the most important

participants. But from a systemic perspective it might be that D is relatively less

important to the system than the coalition of A, B, and C, even though the latter

two are smaller in terms of the transaction amount. This is because the flow of funds

between the banks in the coalition is being taken into account. It should be noted

that the results, as well as the interpretation of the results, depend on the measure

of transaction intensity used.

We try two measures of transaction intensity. In the first case the amount of

transactions is equal to the average daily total value of payments sent from one

participant to another, and the maximum potential bilateral linkage for a participant

is then estimated as the sum of the maximum amount of daily gross payment inflow

and the maximum bilateral credit limit (BCL) granted.4 Under the second measure,

the amount of interactions among participants is defined to be the number of days on

which one bank’s daily transaction value sent to the other bank exceeds the average

payment value the sending bank sends to all other system members on the same day;

and it follows that the maximum amount of linkages between any two participants

in this context is the total number of LVTS-operating days over the sample period.

Using these measures, we uncover two of the most likely partitions of the LVTS

network, and in both five big Canadian banks are classified in the same commu-

nity. One of the partitions also reveals a second community of some small and large

participants that conduct most of their businesses in the same province (Quebec).

4In a recent work, Bech, Chapman, and Garratt (2010) use BCLs to define the network structure
of LVTS to capture participants’ liquidity redistribution behaviours.
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In the next section (section 2) we describe the statistical model and the Bayesian

MCMC sampler that are used to estimate the communities in the LVTS. We then

describe the data set of LVTS payment instructions to which we apply the model in

section 3. The results are presented in section 4 and we conclude in section 5.

2 Empirical Model

2.1 The Model

The empirical model we use to identify community structures from interaction flow

data of a network draws heavily on the work of Čopič, Jackson, and Kirman (2007).

One key assumption of this model is that the probability of nodes of the same

community interacting with each other is different from, and strictly higher than,

the probability of interactions among nodes of different communities. The simplest

model specification defines that these probabilities are the same for all nodes.

The model is described as follows.

Define a set of nodes N = {1, 2, ..., n} which will represent banks in the LVTS.

Over the sample period, we observe links between all pairs of nodes; these links

form a network on the set N that can be represented by a matrix o ∈ Z
n×n
+ . The

total amount of links any two nodes can have is limited by a maximum capacity

between the two nodes over the sample period. Let matrix c ∈ Z
n×n
+ denote the set

of interaction capacities on N .

The set of nodes N can be partitioned into a number of groups (or communities),

and let π be one partition of N . For any partition π and node i ∈ N , kπ(i) denotes

the element of π containing i. Any two nodes within the same group are more likely

to form links with each other than with any other node that is not in that group. We

parametrize the probabilities of forming a link inside a group and outside (across)

groups as pin and pout respectively. As mentioned above, the key assumption is that

1 ≥ pin > pout ≥ 0.

Therefore, given the maximum number of links cij that node i and node j can pos-

sibly have, the probability mass function of an observed number of links oij between
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the two nodes, if i and j are in the same group, is:

p(oij|pin, pout, cij) =

(

cij

oij

)

p
oij

in (1 − pin)cij−oij , (1)

and if i and j are not in the same group is:

p(oij |pin, pout, cij) =

(

cij

oij

)

p
oij

out(1 − pout)
cij−oij , (2)

Both of them follow binomial distributions.

Let’s assume that the probability distribution of the number of links formed

between one pair of nodes is independent of the distribution between any other pair

in the network. Thus, given a community structure π, we can easily calculate the

probability of having the observed network data, matrix o, by multiplying the two

probability functions across all pairs of nodes.

Lo,c(π|pin, pout) = B
∏

i∈N













∏

j∈kπ(i)

(pin)oij (1 − pin)cij−oij













∏

j∈N
j /∈kπ(i)

(pout)
oij (1 − pout)

cij−oij

















(3)

where B is a constant of binomial coefficients.

Taking logs of both sides, we get the log-likelihood function as follows. We ig-

nore the constant log(B)) when comparing the log-likelihood scores between two

partitions.

`o,c(π|pin, pout) = log

(

Lo,c(π|pin, pout)

)

= q1S
In(π)(o) + q2S

In(π)(c) + q3S
Out(π)(o) + q4S

Out(π)(c) (4)

where In(π) = {ij|i ∈ N, j ∈ kπ(i)} denotes the set of all pairs of nodes that are

in the same group under the community structure π; Out(π) = {ij|i ∈ N, j /∈ kπ(i)}

is the set of all pairs of nodes that are not in the same group under π. SIn(π)(o) =
∑

ij∈In(π)

oij and SIn(π)(c) =
∑

ij∈In(π)

cij are the sum of links, between all pairs of nodes

that are in the same group, in the observed network o and in the capacity network
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c respectively. SOut(π)(o) =
∑

ij∈Out(π)

oij and SOut(π)(c) =
∑

ij∈Out(π)

cij are defined in

the same fashion as immediately above. We let q1 = log
(

pin

1−pin

)

; q2 = log(1 − pin);

q3 = log
(

pout

1−pout

)

and q4 = log(1 − pout).
5

2.2 Bayesian Implementation

The set of all possible partitions of a given network is usually a large unordered set.

For example, a network of 14 nodes can be partitioned in more than 190 million dif-

ferent ways. An appropriate Bayesian MCMC sampler provides us with convenience

to compare all these partitions probabilistically.

We use the Gibbs sampler complemented by the Metropolis-Hasting algorithm

to construct our posterior simulators.6 In general, the Gibbs sampler divides the set

of all unknown features of the model θA into groups, where A denotes the model;

and then it generates a sequence of samples for every group by repeatedly making

drawings from well-defined conditional distributions. In this study, θA consists of

three parameters: pin, pout and the network structure π.

The MCMC simulation theory has established that if the output chain converges

to a fixed point, then the simulated sequence {θ
(m)
A }∞m=1, where m is the m-step

iteration, should be a representative of that invariant joint posterior distribution of

all the parameters in the model.

2.2.1 Priors and Posteriors

We assume uniform probability across all possible partitions of the network, which

reflects our limited a priori knowledge about the network structure,

p(π|A) = constant,

this is a proper uninformative prior since the set of all possible partitions is a, very

large, finite number. The likelihood function of a given partition π, conditional on

5An interested reader can find a complete characterization of this maximum likelihood model,
e.g. its theorems and properties, please see Čopič, Jackson, and Kirman (2007).

6An interested reader can find a text book on this method, e.g. Contemporary Bayesian Econo-

metrics and Statistics, by John Geweke.
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the values of pin and pout, is Lo,c(π|pin, pout) in Equation 3. Hence, the log-posterior

of π is obtained as follows.

log

(

p(π|pin, pout, y
o, A)

)

∝ `o,c(π|pin, pout, y
o, A) + log(p(π|A))

∝ `o,c(π|pin, pout, y
o, A) (i.e. Equation (4))

where yo denotes the set of the observed data collected on the network, which in this

study includes the actual linkages among all the nodes, matrix o and the interaction

capacities matrix c.

Our priors for pin and pout are selected to be the Beta distribution, which is the

conjugate prior of the binomial distribution,

p(pin|A) =
1

B(α, β)
pα−1

in (1 − pin)β−1

p(pout|A) =
1

B(α, β)
pα−1

out (1 − pout)
β−1,

where B(α, β) is the Beta function on the two shape parameters α and β. We

chose prior Beta distributions since these are flexible distributions (e.g. it can be

multimodal) and are conjugate; therefore we think this choice is without loss of

generality.

Conditional on the data yo and a given partition π, the likelihood functions of pin

and pout can be derived , respectively, from Equation (1) and (2). These conditional

likelihood functions contain complete information of pin and pout that resides in the

data yo.

L(pin|pout, π, yo, A) ∝
∏

i∈N

∏

j∈kπ(i)

(pin)oij (1 − pin)cij−oij

L(pout|pin, π, yo, A) ∝
∏

i∈N

∏

j∈N
j /∈kπ(i)

(pout)
oij (1 − pout)

cij−oij

Combining the priors and the likelihood functions, we get the posteriors of pin
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and pout as follows.

p(pin|pout, π, y
o
, A) ∝ (pin)

α+









∑

i∈N

∑

j∈kπ(i)

oij









−1

(1 − pin)

β+









∑

i∈N

∑

j∈kπ(i)

(cij − oij)









−1

(5)

p(pout|pin, π, y
o
, A) ∝ (pout)

α+















∑

i∈N

∑

j∈N
j /∈kπ(i)

oij















−1

(1 − pout)

β+















∑

i∈N

∑

j∈N
j /∈kπ(i)

(cij − oij)















−1

(6)

If we assume α = 1 and β = 1 in our prior beliefs about pin and pout, then the

posteriors of the two parameters are Beta distributions with the shape parameters

being:

[





∑

i∈N

∑

j∈kπ(i)

oij



 + 1,





∑

i∈N

∑

j∈kπ(i)

(cij − oij)



 + 1

]

(for pin)

[









∑

i∈N

∑

j∈N
j /∈kπ(i)

oij









+ 1,









∑

i∈N

∑

j∈N
j /∈kπ(i)

(cij − oij)









+ 1

]

(for pout)

Taking logs of both sides of Equation (5) and (6), we get the log-posteriors of pin

and pout.

log

(

p(pin|pout, π, y
o
, A)

)

∝

[

α +





∑

i∈N

∑

j∈kπ(i)

oij



 − 1

]

log(pin)

+

[

β +





∑

i∈N

∑

j∈kπ(i)

(cij − oij)



 − 1

]

log(1 − pin)

log

(

p(pout|pin, π, y
o
, A)

)

∝

[

α +









∑

i∈N

∑

j∈N
j /∈kπ(i)

oij









− 1

]

log(pout)

+

[

β +









∑

i∈N

∑

j∈N
j /∈kπ(i)

(cij − oij)









− 1

]

log(1 − pout)

2.2.2 Metropolis within Gibbs

The use of a combination of the Gibbs sampler and Metropolis-Hasting algorithms

is an effective and powerful solution to sampling issues so that it is straightforward
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to sample parameters in group 1, for instance, from distribution conditional on the

parameters in group 2, but the reverse conditional distribution is intractable. In

this study, both pin and pout are assumed to have conjugate priors, i.e. simple Beta

distributions, and therefore, Markov chains of these two variables are obtained using

standard Gibbs sampling procedure.

On the other hand, it is much less obvious of how to generate samples from the

distribution of partitions conditional on pin and pout. Hence, we use the Metropolis-

Hasting algorithm to generate new candidates for the partition and to form a Markov

chain accordingly.7 In this paper, the probability of move, also known as the Metropolis-

Hasting Ratio (M-H Ratio) is

min

[

p(π(∗))q(π(∗), π(m))

p(π(m))q(π(m), π(∗))
, 1

]

where π(m) is the partition at the m-step iteration; π(∗) is a new partition proposed

for the next-step iteration; q(π(m), π(∗)) is the transition probability density function,

also known as the candidate-generating function, which characterizes the partition

moving from π(m) to π(∗); the target density function, p(π(·)) of any given partition π

is characterized by the log-likelihood function shown above in the model specification:

`o,c(π).

Alternatively, in logarithm, our M-H Ratio can be written as:

min

[

exp

{

`o,c(π
(∗)) + log

(

q(π(∗), π(m))
)

− `o,c(π
(m)) − log

(

q(π(m), π(∗))
)

}

, 1

]

We formulate our transition probability density function q(π(m), π(∗)) on the basis

of the idea that, given an existing partition of the network, a new partition can

be generated by one node random-walking out of a source component to a different

destination component; and more importantly, the probability for the node to random

walk the reverse path is nonzero. The function is constructed as follows.

Let π be a partition of the set of nodes in the given network, and π′ represent

a different partition of the network distinct from π (resulted from moving one node

7An interested reader can lean more details about the Metropolis-Hasting algorithm from Chib
and Greenberg (1995).
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at a time). C denotes the set of components in a given partition and Cij is the jth

element of component i. #C represents the cardinality of the components in a given

partition, and #Ci is the cardinality of the elements in component i.

Then we identify three probabilities underlying every transition of a partition.

P1 = P (Ci|π) = 1
#C denotes the probability of choosing a source component i;

P2 = P (Cij |Ci, π) = 1
#Ci

is the probability of choosing Cij as a candidate to move;

and we let P3 = P (Ck|Ci, Cij , π) =











1
#C if #Ci > 1

1
#C−1 if #Ci = 1

be the probability of

choosing a destination component for placing Cij .

The reason for P3 = 1
#C when #Ci > 1 is that the element Cij selected to be

moved has a possibility of forming its own singleton community. Hence, the transition

probability of the partition of the network changing from π to π′ is calculated as:

P (π′|π) = the probability of moving Cij from Ci to Ck

= P1 × P2 × P3

= P (Ci|π) × P (Cij |Ci, π) × P (Ck|Ci, Cij , π)

=











1
(#C)2×#Ci

if #Ci > 1

1
(#C)2−#C

if #Ci = 1

In summary, the Metropolis-Hasting algorithm used in this paper can be summa-

rized as follows. We conduct the simulation for for m = 1, 2, . . . ,M iterations. For

each iteration, we generate a partition candidate π(∗) from the candidate-generating

function q(π(m), ·) and u from the uniform distribution U(0, 1). If u ≤ M-H Ratio,

then π(∗) is chosen to be the partition for the next-step iteration; otherwise, we let

π(m+1) = π(m). In the end, we get a chain of values {π(1), π(2), . . . , π(M)}.

2.2.3 MCMC Simulation

The Markov chain Monte Carlo simulation begins with some arbitrary initial values

for the two parameters in the model: (1) π(0) is arbitrarily set to be any partition,

for instance, a network of 14 singleton communities; and (2) p
(0)
out (or p

(0)
in ; it does not

matter which one is chosen) is randomly drawn from its posterior beta distribution

9



beta(·|π(0), yo, A); We then successively make drawings from the following conditional

distributions:

p
(0)
in ∼ beta(·|π(0), yo, A, p

(0)
out : p

(0)
in > p

(0)
out)

π(1) = chosen by the M-H algorithm|p
(0)
in , p

(0)
out

. . .

p
(m)
out ∼ beta(·|π(m), yo, A, p

(m−1)
in : p

(m−1)
in > p

(m)
out )

p
(m)
in ∼ beta(·|π(m), yo, A, p

(m)
out : p

(m)
in > p

(m)
out )

π(m+1) = chosen by the M-H algorithm|p
(m)
in , p

(m)
out

. . .

The output of the simulation is a Markov chain of the partitions and the two proba-

bilities: pin and pout, generated after an initial burn-in period. The estimate of the

probability of each different partition of the network is simply the proportion of the

observed times that partition is sampled.

3 Data

The Large Value Transfer System (LVTS) is the main Canadian large value payment

system. There are fifteen direct system members, including the Bank of Canada.

The fourteen private financial institutions (FIs) are listed in Table 1. The majority

of these FIs can also be categorized into two groups: Montreal-based versus Toronto-

based, depending on where the majority of their operations are located.

We use the actual data from LVTS operations that includes all individual transac-

tions and the bilateral credit limits (BCL). This payment system consists of fourteen

direct member institutions plus the Bank of Canada. The LVTS provides two chan-

nels to submit a payment: an RTGS-equivalent process known as Tranche one and a

second method which is a hybrid of RTGS and DNS systems known as Tranche two

(T2).8 We will focus on Tranche two since the majority of LVTS transaction value

flow through this payment stream.

8RTGS and DNS stand for Real Time Gross Settlement and Deferred Net Settlement, respectively.
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Table 1: Direct Participants in LVTS

Royal Bank of Canada
Bank of Montreal
Canadian Imperial Bank of Commerce
The Toronto-Dominion Bank
The Bank of Nova Scotia
National Bank of Canada
Alberta Treasury Branches
Bank of America National Association
BNP Paribas (Canada)
La Caisse Centrale Desjardins du Qubec
Credit Union Central of Canada
HSBC Bank Canada
Laurentian Bank of Canada
State Street Bank and Trust Company

Our sample consists of all T2 transactions as well as BCL’s in the LVTS from

June 1st, 2005 to December 31st, 2007. The start of the sample was chosen based on

an internal analysis that suggests that the system had returned to a stationary equi-

librium around May 2005, following the entry of the newest LVTS direct participant,

State Street Bank and Trust Company, in October 2004. Due to the deteriorating

financial crisis in 2008 and 2009, more recent data is not used for showing the main

results that are aimed to depict the community structure of the LVTS under nor-

mal financial circumstances.9 This sample period spans 650 business days and it

provides us with the largest possible sample size which helps us take into account

low-frequency features of the data such as year-end and quarter-end effects.

The econometric model described in Section 2 requires a measure of interaction

flows between every two nodes in the network and the potential maximal amount

of linkages between the two nodes (i.e. the capacity of that edge). We denote the

matrix of actual transaction flows between any two LVTS direct participants as o

and the matrix of trading capacities as c.

There is no definite way of defining these two matrices, and any logical measure

of transaction intensity can be considered. We construct our o and c matrices in two

9In addition, a major parameter change in the LVTS took effect on May 1, 2008, i.e. an increase
of the System Wide Percentage from 24% to 30%. It is possible that this change may affect certain
aspects of participant’s payment behaviours.
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different ways.

Under the Liquidity Measure, the o matrix is a matrix of daily gross transaction

value that one bank sends to the other averaged over the sample period. The c matrix,

the maximum capacity of transactions between any two participants is estimated by

the sum of the maximum BCL and the maximum daily total transaction value (chosen

independently of the maximum BCL) that one participant receives from the other

during the sample period. Under this measure, the entries of c matrix represent the

upper bound of bilateral liquidity available to each LVTS participant, and
oij

cij
can

be interpreted as Bank i’s average liquidity-consumption ratio. The idea is that the

higher the ratio, the more intensively the payment-sending participant transacts with

the payment-receiving participant.10

For the Averages Measure, the transaction flow in o matrix between every pair

of participants is estimated by the number of days in the sample on which one

participant’s daily transaction value sent to the other participant exceeds the average

flow on the same day from that sending bank to all other system members. The

maximum linkages between any two participants is well-defined under this measure,

so every entry in c matrix is the total number of LVTS-operating days over the

sample period. The transaction intensity is thus reflected in the frequency at which

each participant’s bilateral daily gross payment outflow is larger in value than its

multilateral average over the sample period.

4 Results

We apply the maximum likelihood model to the historical LVTS operations data. Us-

ing the two measures of transaction intensity specified in Section 3, we uncover two

different community structures of business relationships among LVTS direct partici-

pants. Under the both measures, the “big five” Canadian banks are invariably found

in the same group; the averages measure also reveals a second community composed

10To be 100% correct, multilateral liquidity constraints should also be considered in constructing
the measure. However, the focus on bilateral liquidity flows should be sufficient in this case be-
cause the empirical model proposed by Čopič, Jackson, and Kirman (2007) is founded on bilateral
interactions between pairs of nodes in a system.
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of participants that are based in the same physical location.

We conduct three simulations for each measure of transaction intensity, using

different staring values of the partition of the LVTS. The three starting values of the

partition we used are: (i) a network of 14 singleton communities; (ii) every LVTS

participant being in one and the same group; and (iii) a community structure featured

by 7 singletons, a small Montreal-based cluster and a big Toronto-based group of the

five big Canadian banks. The third partition is in fact one of the main results that we

obtained from implementing the grid-search algorithm developed by Čopič, Jackson,

and Kirman (2007).

Under each measure of transaction intensity, the results from all simulations are

consolidated into one output chain for every parameter. Each simulation runs for

5 × 105 iterations, and we execute a burn-in by discarding the initial 10% of the

output chain in each simulation.

4.1 Liquidity Measure

Using the liquidity measure of transaction intensity in the LVTS, we discover a cluster

of five Toronto-based Canadian banks and that every other participant forms its

own singleton community. As shown in Figure 1, T labels the participants whose

operations are based in Toronto, M represents Montreal-based banks, and O means

Other geographical locations. Large circles represent large participants and different

communities are shaded with different colors to show the clustering. The positioning

of the circles in the graph is randomly chosen and irrelevant in describing the results.

This partition is consistent with the anecdotal practice of grouping LVTS partic-

ipants based on their transaction sizes in the system, i.e. large banks versus small

participants. Indeed, during the sample period of this study, the payment value sent

by the five big banks accounts for 82.24% of the system throughput.

All 1.35×106 post-burn-in observations point to this community structure without

exception, and the posterior average values for the two parameters are p̄in = 0.334223

and p̄out = 0.121034. The difference between the two means is tested at four sig-

nificance levels of 5%, 1%, 0.5% and 0.1%, and the null hypothesis of the difference

13



Figure 1: Community Structure of the LVTS under Liquidity Measure
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being zero is rejected in all cases. 11

The 95% highest probability density (HPD) interval for the MCMC draws of pin

and pout are [0.3342210, 0.3342244] and [0.1210333, 0.1210353], respectively.

4.2 Averages Measure

Under the Averages measure, the strength of directed links between any two partic-

ipants is estimated by comparing, for each day in the sample, the payment sender’s

bilateral transaction outflow with its multilateral average. The idea is that if two

participants both send payments to each other consistently more than what they

transact in the system on average (in terms of the dollar value), then they should be

considered having a closer-than-average business relationship and thus belong to the

same community.

This altered perspective results in different partitions of the network. Our main

result shows a partition consisting of two clusters of LVTS direct participants. In

addition to the large community composed of the five big Canadian banks, the same

as uncovered by the liquidity measure of transaction intensity, there is a second

11The fact that the community structure does not change for all iterations of the MCMC run is
not surprising given the amount of data relative to the community structure; this is expanded upon
in the discussion below.
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cluster of two Montreal-based participants, one large in size, the other small. The

remaining seven LVTS participants still form their own singleton communities, and

the whole community structure is portrayed in Figure 2.

Figure 2: Community Structure of the LVTS under Averages Measure
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This partition of the LVTS network accounts for 66.67% of all 1.35× 106 MCMC

draws in the combined simulations, This community structure tells us that, during

the sample period, the chances that larger value of bilateral payments flow between

the participants within the same group is higher than that occurring between any

pair of the participants across communities. For example, the network data shows

that it is more common that the large Montreal-based bank sent more payments in

value on a day to one of the small participants based in the same province than

its average outflow on that day, and vice versa. The same is true with the five big

Toronto-based banks in the larger community.

The finding can be potentially useful. For instance, in an event of either of

the participants in the Montreal cluster experiencing an operational disturbance, the

discovered structure, based on the transaction intensity among participants, suggests

that the other participant would be more likely and/or severely affected than any

other system member on average.

This community structure is meaningful also in the sense that there seems to
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be a geographic component in the structure of LVTS payment flows. LVTS is the

large-value system in Canada used to settle funds positions in other payments (and

securities) clearing and settlement systems, and these funds positions are initiated

and driven by real business funds transfers between numerous economic agents. It

is not hard to see that the same physical operating location can result in a higher

degree of business association between LVTS direct participants.

The rest 33.33% of the observations in the simulation point to a slightly differ-

ent partition of the network. That is, the Montreal-based group and the five big

Toronto banks cluster together and form one big community, with other participants

remaining singletons.12

The posterior average estimated values for the two parameters are p̄in = 0.678916

and p̄out = 0.177031. Tested at the significance level of 0.1%, the two values are shown

statistically different from each other in all cases. The 95% HPD intervals for pin and

pout are in this case [0.5272393, 0.7591251] and [0.1651885, 0.1842609] respectively.

4.3 Discussions

We carried out two assessments to ensure the correctness of our findings. First, we

implemented a classical statistical approach, i.e. the grid-search algorithm developed

by Čopič, Jackson, and Kirman (2007), to the same sample of the LVTS data, and

the results found are identical to what is shown above.13 Second, we conducted a

formal verification of the posterior simulators, known as the Joint Distribution Test

(introduced by Geweke (2004)), to confirm that our simulation results do not contain

any analytical and/or computing errors.14

In the Joint Distribution test, the test functions used are the mean and variance

of pin, pout and the number of components averaged over all observed partitions,

as well as the covariances across the three parameters. We use 2.5 × 105 iterations

of each of the marginal-conditional and successive-conditional simulators. Table 2

12We applied Geweke’s Joint Distribution Test to make sure of no analytical and/or computing
errors in the MCMC simulations. Details of the test are provided in the next section (section 4.3).
Therefore, we conjectured that this might be a multi-modal surface. The difficulty in the chain
convergence can potentially be resolved in future work by introducing a hierarchal structure into the
model.

13For details of the algorithm, please see Čopič, Jackson, and Kirman (2007).
14For details of the Joint Distribution test, please see Geweke (2004).
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presents the test results showing that none of the nine test statistics failed the test

at all four levels of significance.

Table 2: Summary of the Joint Distribution Test Results

Tests Failing (yes or no) at p-value=
Test Statistic 0.05 0.01 0.005 0.001

pin no no no no

pout no no no no

mean(#C) no no no no

p2
in no no no no

p2
out no no no no

[mean(#C)]2 no no no no

pin × pout no no no no

pin × mean(#C) no no no no

pout × mean(#C) no no no no

One interesting result from the joint distribution test is the amount of information

used to pin down the partition. The way to see this is that each day contains

information on 14(14 − 1) links between banks this implies we have 118300 data

points to pin down three parameters. Thinking of it this way it is clear that there is

a large amount of data to pin down a given partition.

The empirical results found in this study highlight two main points.15 16First,

the measure of capacity and transaction intensity has a direct effect on what kind of

community structures (as well as the interpretation of these structures) that can be

uncovered by this maximum likelihood (ML) method. Second, for a highly heteroge-

neous network such as LVTS, a simple model with only two parameters is probably

much too simple to capture the patterns of relationships, despite the LVTS being

15In addition to the data discussed in the paper, we also experimented with various other data
samples: (i) five weekday sub-samples (i.e. Mondays, Tuesdays, Wednesdays, Thursdays and Fridays)
of the same base period (June 1st, 2005 - December 31st, 2007), (ii) pre-financial-crisis phase (July
2006 - June 2007), and (iii) the financial-crisis period (September 2008 - July 2009). In all these
case, the Averages measure revealed results identical to those presented earlier in the paper. Under
the Liquidity measure, the results are unchanged for most of the new data samples, however, there
are two exceptions. During the period of financial crisis, the result shows a cluster of three Toronto-
based banks with all remaining participants being singletons. And in the case of Tuesdays, we found
an even smaller Toronto cluster made of two banks only with the remaining banks as singletons;
this result is probably related to the fact that most statutory holidays fall on Monday and therefore
transaction intensity in LVTS may show differently.

16Future work can look into the different results that may arise if we exclude client-initiated
payments from the data and focus on inter-bank transactions only.
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a truly small network. This also in part explains why a second small community

appears under the Averages measure but is not visible under the Liquidity measure.

The liquidity measure constructs the interaction intensity among LVTS participants

by completely drawing on transaction value and the intraday liquidity, whereas the

Averages measure is liquidity-based but transformed. Hence, when transaction value

is examined directly, it is very likely that the payment flows to and from the five big

Toronto-based banks are so strongly dominant that other small communities in the

network will be overwhelmed.

Since the Averages measure uncovers communities of banks based on their ge-

ographic proximity, we conducted the following two sensitivity studies. First, we

restricted the sample to a subset of the banks to see whether or not a richer model

is needed. Second, using Čopič, Jackson, and Kirman (2007)’s classical statistical

approach, we examined the partitions which are “likely” but not the ML estimate of

the partition.

We removed the larger Toronto community from the data and reran the MCMC

simulator on the remaining subset of banks. While these results should be used

with caution they do provide an idea of whether or not a richer model (i.e. more

parameters for inter- and intra-community transactions) is needed; since we are now

essentially allowing the two parameters pin and pout for the remaining subset of LVTS

participants to vary independently of the data on the five large banks.

The results from the re-estimation show that the geographic structure is still in the

data but another one bank based in the same province now joins the Montreal group

and the remaining small participants form singleton communities. The estimated

values of pin and pout in this case are 0.3629 and 0.0173 respectively; which are

remarkably different from the estimation obtained on the full set of data. Both the

intra-community and the inter-community transaction probabilities are much lower

than what are shown in the full data set, which implies that the results from the full-

sample estimation are mostly driven by the transaction flows to, from and within

the large Toronto community. This result suggests that a richer model is probably

needed to reveal a hierarchical structure of the LVTS community, i.e. by estimating
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extra parameters (additional pin’s and pout’s) at different levels of communities.

One advantage of using Čopič, Jackson, and Kirman (2007)’s grid-search esti-

mation method is that it provides a complete ranking of all possible partitions of a

network. Hence, we also examine the second and the third most likely community

structures of the LVTS under each of the two measures of transaction intensity. Un-

der the Liquidity measure, the second best partition found is the same as shown in

Figure 2. That is, in addition to the group of five big Toronto banks, the partition

also contains a small component comprised of two LVTS participants whose oper-

ations are based in Montreal. Under the averages measure, the second most likely

partition is similar to the results from the sub-sample re-estimation above. More

specifically, it shows a big cluster of five large Toronto participants, a small Montreal

group that consists of three financial institutions and the rest of system members

forming their singleton communities.

Both sensitivity analyses suggest that the results found in this study are in general

useful and valuable; however, it is likely that a richer specification of the model would

help find a complex community structure that more accurately describes the structure

of the business relationships among the LVTS direct participants.

5 Concluding Remarks

In this paper, we implemented on the LVTS social network the techniques developed

by Čopič, Jackson, and Kirman (2007), a new network-partitioning model based on

likelihood estimation.

This likelihood approach provides a unique probabilistic perspective on identify-

ing community structures from sophisticated network data, by emphasizing what a

community structure is and how a particular partition can be formed. More specifi-

cally, it allows us to find transaction patterns among LVTS participants solely based

on the outcomes of payment exchanges in the system.

The major finding is that using an appropriate measure of transaction intensity,

we find that the most likely partition of the network of LVTS direct participants

consists of two clusters. One is a group of five large Toronto-based banks, and the
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other is a small community of financial institutions whose operations are based in

the city of Montreal.

Our results show that no matter how the transaction intensity among LVTS

participants is defined, the cluster of the five big banks is always strongly dominant in

the network. The fact that it is difficult to identify additional communities among the

remaining small participants suggests that we should extend the model to introduce

hierarchies to the network structure. For example, we can add an extra pair of

parameters pin and pout for small participants. Both the LVTS network data and the

results from this study show that it is very unlikely for the small LVTS participants

to have the same probabilities of interacting with other system members within the

same group and/or across the group as do large banks.

Other steps in our future work include changing the model specifications (not

based on strict binomial distribution, which will broaden the scope of defining the o

and c matrices), using daily frequency data, and comparing this likelihood method

with that of Bergstrom (2007).
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Čopič, J., M. O. Jackson, and A. Kirman (2007): “Identifying Community

Structures from Network Data via Maximum Likelihood Methods,” Mimeo Stand-

ford University.

Geweke, J. (2004): “Getting it Right: Joint Distribution Tests of Posterior Simu-

lators,” Journal of the American Statistical Association, 99(467).

O’Conner, S., J. T. Chapman, and K. Millar (2008): “Liquidity Efficiency

and Distribution in the LVTS: Non-Neutrality of System Changes Under Network

Asymmetry,” Bank of Canada Discussion Paper 2008-11.

Soramaki, K., M. L. Bech, J. Arnold, R. J. Glass, and W. E. Beyeler

(2007): “The Topology of Interbank Payment Flows,” Statistical Mechanics and

its Applications, 379(1), 317–333.

21


	origtext.pdf
	Introduction
	Empirical Model
	The Model
	Bayesian Implementation
	Priors and Posteriors
	Metropolis within Gibbs
	MCMC Simulation


	Data
	Results
	Liquidity Measure
	Averages Measure
	Discussions

	Concluding Remarks




