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Abstract

Wavelets are mathematical expansions that transform data from the time domain into different
layers of frequency levels. Compared to standard Fourier analysis, they have the advantage of
being localized both in time and in the frequency domain, and enable the researcher to observe
and analyze data at different scales. While their theoretical foundations were completed by the
late 1980s, the 1990s saw a rapid spread to a wide range of applied sciences. A number of
successful applications indicate that wavelets are on the verge of entering mainstream
econometrics. This paper gives an informal and non-technical introduction to wavelets, and
describes their potential for the economic researcher.

JEL classification: C1
Bank classification: Econometric and statistical methods

Résumé

Les ondelettes sont des expansions mathématiques qui transforment les données du domaine
temporel en différentes strates de fréquences. Elles présentent I'avantage, par rapport a I'analyse
de Fourier standard, d’étre localisées aussi bien dans le domaine temporel que dans celui des
fréquences et de permettre au chercheur d’observer et d’analyser des données a différentes
échelles. Les ondelettes, dont les fondements théoriques ont été mis au point a la fin des années
1980, se sont rapidement étendues a un large éventail de sciences appliquées au cours de la
décennie 1990. A en juger par les résultats fructueux obtenus a I'égard d’un certain nombre
d’applications, elles sont sur le point de s’ajouter a la panoplie d’outils couramment utilisés par
'économétre. Dans cette étude, I'auteur présente une introduction informelle et non technique
aux ondelettes et expose les possibilités gu’elles ouvrent sur le plan de la recherche en économie.

Classification JEL : C1
Classification de la Banque : Méthodes économétriques et statistiques






1. Introduction

Wavelets can be compared to a wide-angle camera lens that allows one to take broad landscape
portraits as well as zoom in on microscopic detail that is normally hidden to the human eye. In
mathematical terms, wavelets are local orthonormal bases consisting of small waves that dissect a
function into layers of different scale.

Wavelet theory has its roots in Fourier analysis, but there are important differences. The Fourier
transformation uses a sum of sine and cosine functions at different wavelengths to represent a
given function. Sine and cosine functions, however, are periodic functions that are inhagmtly
local; that is, they go on to plus and minus infinity on both ends of the real line. Therefore, any
change at a particular point of the time domain has an effect that is felt over the entire real line. In
praxis, this means that we assume the frequency content of the function to be stationary along the
time axis. To overcome this restriction, researchers invented the windowed Fourier transform. The
data are cut up into several intervals along the time axis and the Fourier transform is taken for
each interval separately.

Wavelets, on the other hand, are defined over a finite domain. Unlike the Fourier transform, they
are localized both in time and in scale (see Figure 1). They provide a convenient and efficient way
of representing complex signals. More importantly, wavelets can cut data up into different
frequency components for individual analysis. This scale decomposition opens a whole new way
of processing data. As Graps (1995) states, wavelets enable us to see both tlanttthestrees.

A wavelet basis consists of a father wavelet that represents the smooth baseline trend and a mother
wavelet that is dilated and shifted to construct different levels of detail. This resembles the
building plan of a natural organism that is based on self-similarity. At high scales, the wavelet has

a small time support, enabling it to zoom in on details such as spikes and cusps, and on short-lived
phenomena such as delta functions. At low scales, wavelets capture long-run phenomena. Their
ability to adapt their scale and time support enables them to escape Heisenberg’s curse; i.e., the
law that says that one cannot be simultaneously precise in the time and the frequency domain.

After their theoretical foundations were completed by the late 1980s, wavelets began to enter the
applied sciences. One of their first applications was in earthquake prediction. Wavelets provided a
time dimension to non-stationary seismic signals that Fourier analysis lacked. Realizing their
potential for compressing data, the FBI in 1992 reorganized its entire fingerprint database using
waveletst Another early example, cited by Vidakovic and Mueller (1994), includes the de-noising

1. Mostcurrentimage-compressing tools, like JPEG, are still based on Fourier analysis, but the new
JPEG2000 standard will use both Fourier and wavelets. For sound compression, as in MP3, Fourier
appears to be preferable, since sound signals naturally consist of sine and cosine signals.



of old recordings of Brahms playing his “First Hungarian Dance” on piano. Wavelets are now
applied in a wide range of fields, from fractals and partial differential equations in mathematics to
signal and image processing, speech recognition, software design, engineering, meteorology, and

statistics, among others.
Figure 1: Time-Frequency Plane for Fourier and Wavelet Transform

Fourier Windowed Fourier Wavelet
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Most wavelet-related research in economics has been done in the last few years and only a
relatively small number of papers have been published. Judging from the large number of working
papers on wavelets and their numerous statistical applications in physics, engineering, and
biomedical research, the number of publications is expected to grow rapidly.

Their affinity to the Fourier transform makes wavelets an ideal candidate for frequency domain
analysis in time-series econometrics. Conversely, their capability to simultaneously capture long-
term movements and high-frequency details are very useful when dealing with non-stationary and
complex functions. Wavelet estimators have also been used in connection with fractionally
integrated processes that have long-memory properties. Decomposing a time series into different
scales may reveal details that can be interpreted on theoretical grounds as well as be used to
improve forecast accuracy. The theoretical point of interest is the observation that economic



actions and decision-making take place at different scales. Forecasting seems to improve at the
scale level, because forecasting models like autoregressive moving average (ARMA) or neural
networks can extract information from the different scales that are hidden in the aggregate.

2. Wavelet Evolution

In 1807, the French mathematician Joseph Fourier asserted tiatany  -periodic function could
be represented by a superposition of sines and cosines. The Fourier series and its coefficients are
given by

[oe]

f(x) = %O+ Z (a [cog(kx) + b, [Bin(kx))
k=1

a, = I(z)nf(x)cos(kx)dx andb, = Isnf(x)sin(kx)dx .

Using Euler's result that”? = cos(y) +i [sin(y) , the Fourier transfofrft) :Im f(x)e ™
serves as a bridge between the time domain and the frequency domain. It géve rise to a new field
of mathematics: frequency analysis.

Fourier transforms have played a dominant role in many areas of applied and pure science.
Researchers, however, have kept looking for new mathematical structures that enabled them to
localize functions in both the time and the frequency domain, a quest that led them from
frequency analysis tecale analysisThe idea was to construct local basis functions that could be
shifted and scaled and then reassembled to approximate a given signal.

In 1910, Alfred Haar constructed the first known wavelet basis by showing that any continuous
function f(x) on [0,1] can be approximated by a series of step functions. The Haar basis is
described in more detail in section 3. Some of its elements are shown in Figure 2, which illustrates
the concept of dilation and translation: a basather wavele)yg is dilated by narrowing its

support and shifted (translated) along the unit interval. The individual elements are linearly
independent (in fact, orthogonal) and can represent stepfunctions of increased fineness.

Haar’s discovery played an important part in the work of the physicist Paul Levy, who in the
1930s used the Haar basis function to redefine Brownian motion. Since Brownian motion is non-
differentiable by definition, the ability of the Haar basis function to describe small and
complicated detail proved superior to the Fourier basis functions.



Figure 2: The Haar Wavelet at Three Dilation Levels
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Further progress was made in the 1960s by the mathematicians Guido Weiss and Ronald R.
Coifman, who were looking for common “assembly rules” to build all elements of a function
space by its most primitive elements, called “atoms.” In 1980, Grossman, a mathematician, and
Morlet, an engineer, gave the first formal definition of a wavelet in the context of quantum
physics. The most commonly used definition, however, dates back to 1981, when Strémberg
constructed orthonormal bases of the fapja(x) = 22 Lp(2j x - K). Here,)(x) is a mother wavelet

that is dilated and translated with paramegensdk, respectively.

Wavelets entered mainstream science with Stephane Mallat’s work in digital signal processing. In
1985, he discovered the relationship between quadrature mirror filters (a pair of high- and low-
pass filters) and orthonormal wavelet bases. Mallat's multiresolution analysis builds on an
iterative filter algorithm (called a pyramid algorithm) and it is the cornerstone of the fast wavelet
transform (FWT), the wavelet pendant to the fast Fourier transform @-F.last important

2. The FFT uses matrix factorization to decrease the number of operations.



step in the evolution of wavelet theory occurred in 1988, when Ingrid Daubechies constructed
“consumer-ready” wavelets with a preassigned degree of smoothness.

3. ABitof Wavelet Theory

Although they can have infinitely different shapes, all wavelets share the same basic construction
plan. Given a mother wavelg(x), an orthonormal basis{f,(x)} in LZ(R), the space of square
integrable functions, is defined by

Wi () = 22 (2 x- k).

The oldest and, for demonstration purposes, most useful wavelet is the Haar function, a step
function defined as

Wz)= 1(z0[0, 0.5))
=-10[0.5, 1)).

The parametensandk dilate and translate the function, as shown in Figure 2 00, 1, 2, anck
=0,. 2% Increasing makes the Haar function finer, whikeshifts it from the left to the right.
Wik is an orthonormal basis, because it

@) is orthogonaIJ’(Llek W) = 0, ((j#!1)0O(k#m)) , and

(i) has anL2 norm of unityJ'(zV 20(2'x=K))dx = 1.
The scaling factor/2 helps achieve the latter result.

Lety be a data vector witl"Zlements that can be represented by a piecewise constant function,
f(x) on [0,1].3 The wavelet transformation of f(x) is then given by

n-12'-1

f(X) = co(x) + z z CikW(x) -

i=0k=0

Here,@(X) is the father wavelet, also referred to as the scaling function that represents the coarsest
components or the smooth baseline trend of the function. For the simplest wavelet, the Haar

3.  Any vectory can be compressed into a function defined on the unit interval by applying the dilation
2"-1
formula f() = 3 v, Mk2 "< x<(k+1)27™" .
k=0



wavelet, the father wavelet is just a horizontal line equal to one. For a more complicated wavelet,
the Daubechies(4) wavelet (discussed in section 4), the father wavelet and the mother wavelet are
shown in Figure 3. While the father wavelet integrates to one, the mother wavelet integrates to
zero, reflecting the fact that it is used to represent differences in the data that average out to zero.
Figure 4 gives an intuitive visualization of a Daubechies wavelet basis in the time-scale space.
The father wavelet covers the whole time support at the lowest scale of resolution, while the
mother wavelet is dilated and translated to capture different levels of fineness. The wavelet
transform consists of the vector of all coefficients [ ¢y, Cog, C10, €11, C20 Co1, -+ J-

Figure 3: The Daubechies(4) Father and Mother Wavelet
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Figure 4: Daubechies(4) Wavelet Basis
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Consider, for example, the four-dimensional vegter[ 2, 5, 2, 7 ]'. Its wavelet representation is
given byy = W c,whereW contains the Haar basis vectorg, = [‘Poo Woo W10 w11:|

11 J2 0f |%
11-J2 0 |C0
1-1 0 J2| [C10
1-1 0 —J/2 [Cu

~N N O DN
I

The matrix of basis vectoM/ can be inverted easily, since the inverse of any orthogonal matrix is
equal to its transpose divided by Zhe solution for the wavelet coefficients is then given by

2

4, In general, the inverse of a (real valued) orthogonal matmwith dimensiomisa A', witha = \A\_F‘.
2

For a complex orthogonal matr& = modulus A"conjugaté A’



o ) . 4 ]
Co 1 1 1 1] |2 _1/2
Coo =1'D1 1 -1-1 0o = -3 |.
co 4 [V2-420 0] |2 2.2

A similar representation could have been achieved by any orthogonal basis, such as the identity
matrix | ,. However, the wavelet transform has the advantage of decomposing the data into
different scales; that is, different levels of fineness. The vector of wavelet coefficients from our
example consists of three levels (or scalgg)cg, and g = (c;oC11). Setting the last level equal

to zero and premultiplying withlV sets the input vectgrequal to [ 7/2 7/2 9/2 9/2]’; that is, the

first two and the last two elements are averaged. In signal processing this is equivalent to applying
alow-pass filter Setting the last two levels equal to zero results in the transformed input vector [ 4

4 4 47, the mean of. Conversely, we could set all coefficients, excggtequal to zero and

invert the transform by multiplying by/. The result would be the vector [ -1/2 -1/2 1/2 1/27,

the difference between the mean and the second level of smoothness [ 7/2 7/2 9/2 9/27]. Finally,
setting all coefficients excepigc,, equal to zero and reversing the transform gives the vector
[-3/2 3/2 -5/2 5/2], the difference between the second level of smoothness and the original
data. We can therefore use the wavelet decomposition to represent thg asdioe sum of its
smooth componen§,, and detail componeni, andD;:

4 [-1/9 [-3/2
4 . |-1/2 . |3/2

y = +D,+D, = + + .
=2*+D2*+ Dy 4 |1/2| |-5/2
4 |1/2| |s5/2

Figure 5 shows the wavelet transformation for a more complicated functioBapgelerfunction

(taken from Vidakovic 1999) Each additional level doubles the resolution and adds more detail
to the function. It is also clear that the Haar wavelet is not the optimal choice for continuous and
smooth functions, because a Daubechies wavelet achieves a much better approximation at four
levels of depth.

5.  The Doppler function is defined as:

2.1t

f(x) = x(1-x) Eslnx+0.05.




Figure 5: Approximation of the Doppler Function using Different Levels of Finenes$§
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For a comparison, we look at the discrete Fourier transform of the yector

3
f(x) = Z akelkx’
k=0

or in matrix formf(x) = Fa,

oz PP Y 1%
f(arv2)| _ |11 i ek
few2)|  |1i%i%i% |ay
f(31/2) 1i%i%:9 |as

As beforeF constitutes an orthogonal basis and can be inverted by transposing its complex
conjugate and dividing by 4:

a 11 IRERES
a _ 11 () () () Js| _ [2i|
TlEE g |8

3 1 (<)? (=i)® (@)

6. Smooth wavelets like the Daubechies_4 wavelet (upper right corner) give better approximations to
continuous functions than the Haar wavelet.
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The Fourier coefficients represent the energy content of different frequencies. For a power
spectogram, one uses the absolute value of the squared coefficients, in this case,

s=[196, 4, 64, 47.
3.1 Mallat's multiscale analysi¢

Calculating wavelet expansions directly by matrix inversion is computationally intensive. A big
breakthrough came in the mid-1980s when Mallat introduced methods from signal processing
theory to wavelets. Using a technique called quadrature mirror filtering, he showed that any
discrete wavelet transformation can be calculated rapidly using a cascade-like algorithm. This
realization not only added to the general understanding of wavelets, it reduced the number of
operations necessary for the transform to the orderfadm the order oh log(n), thus making it

faster than the FFT. Technically, a multiscale or multiresolution analysis projects a function on a
set of closed subspaces:

L. OV_ 0V,0V,0V,...

Furthermore, since the subspaces are nested, one can repfesetiite direct sum of the coarsely
approximated subspadg ; and its orthogonal complemehtj_;:

V=V OW,_y.

The multiscale analysis then uses filters to split up a funfgjialvy into different components
that belong to subspac¥g_; (i = 1,2,..) and their orthogonal complements:

M
fn = fncatones= ) Ovemt fuowe
i=1

Each represents a different scale of the function. One can think of the sub4peacedferent
levels of magnification, revealing more and more detail. They are self-similar, such that

f() 0V, = f(2)0V,,,,j0Z.

In the language of signal processing, we obtain the pair of functigns; g@nd by applying
a pair ofquadrature mirror filtergo the original functionf , . In a discrete setting, the quadrature
mirror filters are a pair of sequencel(K)} and {g(k)}, for kOZ. h(k) is alow-passor low-band

7. In the following, the terms multiscale analysis and multiresolution analysis will be used
interchangeably.
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filter, while g(k) is ahigh-passor high-bandfilter. Intuitively, the low-pass filter makes the data
smoother and coarser, while the high-pass filter retains the detailed information. The two filters
are connected through the relation

g(n) = (-1)"h(1-n).

Each wavelet has a scaling function, or father wavelet, , that spans th&gpackecan be
represented by a linear combination of functions from the next subsgac®ince the subspaces
are self-similar and nested, there exists a relationship between scaling functions of any two
neighbouring subspaceg,andVj,. This relationship is called treealing equatioror dilation
equationand defines the filter coefficients:

009 = Y he26(2x=1).
kOz

In praxis, both filters are mappings frdfd) to 1(22); that is, they transform a vector with
elements into two vectors withi2 elements each, one of which contains the data smoothed by the
low-pass filter, with the other containing the detail that was removed. Each wavelet can be
characterized by a finite set of filter coefficients derived from the scaling equation that relates
scaling functions of different subspac¥s,to each other. For the Haar wavelet, the filter
coefficients are

1 1 1

h(1) =h(2) = 7 and g(1) = 7 9(2) = _72 :

Using the vector f(2) =[2 5 2 7 ]’ from our earlier example, the filtered vectors are given by

|7 9 _|-3 -5
f(1) = {TZ TZ} andg(l) = {TZ TZ} :

f(1) is a weighted average of the first two and the second two entf{@$, oéspectively, where

the filter coefficients are used as weights. The same procedure is uggtl)fa@xcept that one of

the filter coefficients is negative, so that the weighted average is actually a difference, cutting out
detail fromf(1). It is convenient to use operatdisandG to denote the filter relations applied to a
sequence = {a,}:

(Ha), = S h(n-Ka,,
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(Ga), = T a(n-Ka,.

Let the original signal be™, a vector with 2 elements. There"™D = H ¢ andd™D =G ",
Applying the low-pass filter twice yiela$™2) = H2 ¢ andd(™2) = HG d". Using the
multiresolution analysis, the discrete wavelet transform of a seqyem',(@) of length ?is
another sequence of equal length, given by

w=[d™D) 2 dD dO) O] =[Gy GHy, GH, ... ,GH™ 1y, GH"y, H"y].

That is, the wavelet transform consists of all layers of detail, going from fine to coarse, stacked
next to each other. Figure 6 shows the graphical interpretation of the multiresolution analysis for
the Doppler function from Figure 2 for a Haar wavelet transformation.

To invert the wavelet transform, an inverse filtering procedure is applied. The opetators G and
map a sequence frol{22) into1(Z), and each element is doubled and multiplied by the filter
coefficients. Consider, for example, applying the inverse low-pass and the inverse high-pass filters
to the vectord$(1) andg(1):

ey 779
A (1) {_ .

Adding up the two expressions reproduces the initial vei¢®r,

Figures 7 and 8 give a detailed example of the decomposition and the inverse transfotm of a 2
vector using the Haar wavelet.

The wavelet transformation in multiresolution analysis form is then givem by ¢(0), d(0), d(1),
d2) ], or

W:L_fzz_fz_ 222

To obtain the wavelet coefficiem@ , one needs to muligby o N2 , such that for the
equationy = Wc ¢ becomes

13 3 .55 1—3—4}

C._{133 1 5 51-3 1}

whereW is the matrix representing the Haar wavelet basis for eight dimensions.
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Figure 6: Multiresolution Analysis of the Doppler Function
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Figure 7. Multiresolution Analysis of the Vectory=[4 -1 3 2 1 4 -2 2 ]using the
Haar Wavelet Filter Coefficients
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Figure 8: Reverse Wavelet Transform
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4.  Some Examples

We have already seen the Haar wavelet, but it has some serious limitations because of its
discontinuity. In Figure 4 we saw that a Daubechies wavelet is much more convenient for
approximating smooth functions. Daubechies wavelets were the first wavelet family with compact
support and a preassigned degree of smoothness. They have an even number of filter elements,
starting at 4. Wavelets within a family are usually denoted by the length of their filters. Figure 9
shows several specimens of the Daubechies family.

Figure 9: The Daubechies Family
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Increasing the number of filter elements increases the support of the wavelet and makes the
wavelet smoother. The limiting case with two filter coefficients is the Haar wavelet. Daubechies
wavelets are asymmetric, a necessary property for compactly supported waveistiowever,

8. In fact, the Haar wavelet is the only compactly supported orthonormal wavelet that is symmetric.
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possible to construct wavelets that are closely related cousins to the Daubechies family and that
are more symmetric. These wavelets are called least asymmetric wavelets, or symmlets. Another
family of wavelets, coiflets (Figure 10), are even less asymmetric than symmlets. Named by
Ingrid Daubechies after Ronald Coifman, these wavelets pay for their increased symmetry by a
larger support. Compared to Daubechies wavelets, their suppbriign8tead of P-1, wherel

denotes the number of vanishing moméhts.

Figure 10: Coiflets and Biorthogonal Symmetric Wavelets
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Biorthogonal wavelets relax the assumption of a single orthogonal basis. Instead, they are defined
as a pair of mutually orthogonal bases, neither of which is orthogonal. This relaxation allows for
the construction of compactly supported symmetric wavelets. This property is especially desirable
in image processing. Biorthogonal wavelets have primary and dual scaling and wavelet functions;

9. Awavelety had(>=2) vanishing momentsirxnlp(x)dx =0 n=0,1,..N-1.
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an example is shown in the last two rows in Figure 10 for BS_2.2. Figure 11 shows some coiflets
and biorthogonal wavelets with different numbers of filter coefficients.

The following subsections describe some of the most useful ways in which wavelets can be
applied in practice.

4.1  Filtering

One of the main applications of frequency analysis concerns the filtering of noisy signals. Since
white noise is uncorrelated at all lags and leads, it is distributed evenly over the frequency domain.
Graph (a) in Figure 12 shows a digital impulse in the time domain that is covered by Gaussian
white noise (Graph (b)). Graphs (c) and (d) show the power spectral density (normalized absolute
value of the squared Fourier transform) and the wavelet transformation of the noisy signal.

Figure 11: Coiflets and Biorthogonal Symmetric Wavelets
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To filter out the white noise, all coefficients in the frequency domain below a certain bandwidth
are set equal to zero. This process is called a “hard” thresholding rule. (Several other possibilities
for thresholding are shown in Figure 13.) The filtered series are then transformed back into the
time domain. A comparison between graphs (e) and (f) in Figure 12 shows the clearly superior
performance of the inverse wavelet transform to restore the original signal. The performance is
superior because the Fourier transform relies on a large number of layers to suppress the Gibbs
effect (that is, the over- and undershooting at discontinuities), because its basis is non-local in the
time domain and some of the higher layers are rubbed out in the filtering process. Another reason
is that the Haar wavelet, which was used in this example, is particularly useful in approximating
step functions like the rectangular pulse signal.

Figure 12: Filtering
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The method of using thresholding rules to filter data was developed by Donoho and Johnstone
(1994) and it is called wavelet shrinkage, or WaveShrink. Its main advantage is that the de-noising
is carried out without smoothing out sharp structures such as spikes and cusps. One interesting
application is in seismology, where researchers observe the water levels of wells to predict
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earthquakes. Wavelets can filter out the noise without removing the spikes that characterize

changes in water levels prior to earthquakes.

Figure 13: Different Thresholding Rules
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In another application, two sine functions with different frequencies are added up (see Figure 14,
first row). To filter each component of the combined signal, we look at how much energy is
contained in each scale of the wavelet transform. This can be done by adding up the squared
coefficients in each scale to get a scalogram. The scalogram can be compared to the power

spectral plot in Fourier analysis.

In the scalogram, we can observe two spikes: one at the third level and one at the sixth level. Since
slow-moving, low-frequency components are represented by wavelets with larger support, we
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conjecture that level three represents the wavelet transform for function one, and that level six
represents the wavelet transform for function two. To filter out function one, we keep only the first
four levels and pad the rest of the wavelet transform with zeros. Then we take the inverse
transform. Conversely, we keep levels five to nine for the second function and pad the first four
levels with zeros. The last two graphs in Figure 14 show the filtered series given by the inverse
transformations. In this particular case, a Fourier transform would be much more efficient, since
the underlying functions are purely periodic. But wavelets are more useful when we are dealing
with non-periodic data. Many economic data are likely generated as aggregates of different scales.
Separating these scales and analyzing them individually provides interesting insights and can
improve the forecasting accuracy of the aggregate series. Section 5 describes some applications.

Figure 14: Separation of Frequency Levels
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4.3 Disbalancing of energy

This is a relatively abstract concept, but it has very interesting implications. By referring to the
energy of a signal or data vector, we meatfts  -norm:
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Since the wavelet transform is an orthonormal operation, it preserves the total amount of energy.
It distorts its distribution, however, making it more unequal. Figure 15 shows the time series and
the wavelet transform of a unit root process. The lower scales hold most of the energy, a fact that
makes intuitive sense, because the unit root process is characterized by lasting deviations from the
current mean. The second row of Figure 15 shows the Lorentz curves for the two series.

Figure 15: Disbalancing of Energy
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The Lorentz curve was initially developed by economists at the beginning of the twentieth century
to study the distribution of income. It graphs the cumulative distribution against the quantiles. A
45-degree line would represent a completely homogeneous data set, whereas the curve shifts
lower as inequality rises. The Lorentz curve of the wavelet transform is so close to the edge of the
graph that it can hardly be seen.

Why do we want to disbalance the energy of a signal? There are several reasons. For data storage,
this means that the signal can be well described by a fairly short sequence. In statistics
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disbalancing the energy can increase the variance between different distributions, thereby
increasing the power of a test.

4.4  Whitening of correlated signals

The hierarchical construction of wavelets means that non-stationary components of time series are
absorbed by the lower scales, while non-lasting disturbances are captured by the higher scales.
This leads to a phenomenon that Vidakovic (1999) calls the whitening property. The example
shown in Figure 16 uses an integrated autoregressive moving average (ARIMA) (2,1,1) model as
a data-generating process, a realization of which is illustrated in the first graph. This kind of
process contains a unit root; therefore, the autocorrelation function shows almost no decay over
20 periods. On the other hand, the autocorrelation of the differenced ARMA(2,1) model shows a
drop after two periods, as predicted by the Box and Jenkins model selection criterion.

Figure 16: Whitening of Correlated Signals
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The wavelet transform decomposes the time series into log2 (T) scales. In our case, the time series
has 512 observations, so that we have nine scales. The last six graphs in Figure 16 show the
autocorrelation functions of the six highest layers of the original ARIMA series (the bottom three
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layers have four or less elements, not enough information to compute the autocorrelation
functions).

Note that the ninth scale looks almost like a white noise signal, while scales six and four, in
particular, show clear signs of autocorrelation at all included lags. Moreover, these autocorrelation
functions are oscillating, indicating a presence of a mean reverting autoregressive process. This
mean reverting behaviour at the higher scales is a result of the absorbtion of the trend and other
non-stationary components by the lower scales.

5.  Applications for Economists

This section discusses some fields where wavelets have been applied to economic research. All
applications are related to econometrics; however, it is quite possible that wavelets might also be
applied in one way or another directly to theoretical research. Parts of this survey follow Ramsey
(1996), who the reader is referred to for a more detailed treatment of some of the topics.

5.1 Frequency domain analysis

A general result, called the spectral representation theorem, states that any covariance-stationary
process has a representation in both the time domain and the frequency domain. In terms of a time
series that has a moving average representation, using the Fourier transformation, we can write:

[o0]

X(t) = p+ Z Wig_; = u+I§[a(oo)cos(wt) + b(w) sin(wt)] dw.
j=0

One of the first applications of wavelets to time-series analysis was the estimation of the spectrum
density for stationary Gaussian processes (Gao f@@@umann (1996) extends the analysis to
non-Gaussian processes. Given the ability of wavelets to break down a time series on a scale-to-
scale basis, each scale corresponding to a range of frequencies, they can be used in virtually all
applications that were previously based on Fourier analysis. However, as Priestley (1996) points
out, there is only an intuitive and very indirect connection between frequency and the scale.

The Fourier transform is based on periodic functions in the time domain, thus capturing weekly,
monthly, or yearly cycles. However, many economic phenomena, such as business cycles, do not
follow this strict periodicity, favouring the more flexible wavelet approach. Conway and Frame

10. The spectrum of atime series is given by: o
_ 1 i
Sw) = 5= > Ve
j = —0

wj
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(2000), for example, use both Fourier and wavelet techniques to analyze the frequency content of
output gaps generated by different methods ranging from structural VARs to mechanical filters.

5.2  Non-stationarity and complex functions

Nason and von Sachs (1999) and von Sachs and MacGibbon (2000) focus on signals with a
possibly time-changing probability distribution; that is, locally stationary processes whose
moments exhibit slow change. Quasi-stationarity can be defined as a situation in which more
observations per unit period of time would lead to locally asymptotic convergence of the
estimators. The authors suggest the use of a local minimum absolute deviation (MAD) estimator
to estimate the variance of the wavelet coefficients within the quasi-stationary levels. An
important consequence is the suitability of wavelet estimators for generalized autoregressive
conditional heteroscedasticity (GARCH) processes.

Following the seminal paper of Donoho and Johnstone (1994), a whole set of estimators is based
on the notion of wavelet shrinkage, filtering noise using thresholding rules. These estimators are
discussed in detail in Vidakovic (1999, ch. 6). Gao (1997) applies this technique for the case of
heteroscedasticity of unknown form. The model is given by

x = (1) +o(t)e,

wheree is a vector of identically, independently distributed Gaussian disturbancéy. If is
equal to the identity matrix, then the empirical wavelet coeffici@nisre also independent
Gaussian random variables with the same variance. For the heteroscedastic case, the wavelet
coefficients have the asymptotic distribution

w ON(Hf,HD?H"),

whereH is the wavelet transformation matrix, such that Hx.

Ramsey and Zhang (1997) pursue a similar idea, but along a different path. Instead of changing
moments in the time domain, they are concerned with changes in the frequency domain over time.
An analogy is given by human speech, each syllable of which involves a distinct set of
frequencies that last for a short period of time only. Ramsey and Zhang use waveform
dictionaries, a class of transforms that generalizes both windowed Fourier transforms and
wavelets, and that are composed of individual time-frequency atoms. Applications to Standard &
Poor’s (S&P) 500 stock price index and exchange rates with 16,384 observations each show
evidence that frequencies wax and wane in strength over time, but that most of the power is
concentrated in highly time-localized bursts of activity. These bursts, called chirps, are



26

characterized by a rapid buildup of amplitude and rapid oscillation. The authors conclude that
transmission of information is not a swift and effortless process, but that there are periods of
adjustment represented by the chirps. Although the data can be represented by a relatively small
number of atoms (about 100), there seems to be no way of forecasting the chirps.

5.3 Long-memory processes

The importance of differentiating between stationary 1(0) and non-stationary 1(1) processes has
long been one of the focal points in theoretical and applied time-series analysis. In recent years,
the attention of researchers has shifted towards fractionally integrdtguid¢esses, that lie in

the grey area between the two sharp-edged alternatives of I(0) and I(1). Specificallg,lwben
between 0 and 0.5, the process still has a finite variance, but its autocovariance function decays at
a much slower rate than that of a stationary ARMA process. Such processes are called long-
memory processes. Whellies between 0.5 and 1, the variance becomes infinite, but the process
still returns to its long-run equilibrium. The study of long-memory processes dates back to Hurst
(1951) and has been applied to a number of economic time series in recent years. Jensen (1999)
cites a wide range of applications, including real GDP, interest rates, stock market returns, option
prices, and exchange rates.

A fractionally integrated processd)( can be defined by

(1-0)'x(1) = &(t),
whereg(t) is white noise or follows an ARMA process.

Because long-memory processes have a very dense covariance matrix, direct maximum-
likelihood estimation is not feasible for large data sets. Instead, the estimator most often used is
based on a nonparametric approach, which regresses the log values of the periodogram on the log
Fourier frequencies to estimatdGeweke and Porter-Hudak (GPH) 1983).

McCoy and Walden (1996) find a log-linear relationship between the wavelet coefficients’
variance and its scale and develop a maximum-likelihood estimator. Jensen (1999) develops a
simpler, ordinary least-squares (OLS) estimator that is based on the observation that for a mean
zero I(d) process| < 0.5, the wavelet coefficienksi;jk (for scale (dilat_ijoamd translatiotk),

. . . . 2.-2jd .
are asymptotically normally distributed with mean zero and varianze as j goes to zero.
Taking logs, we can estimatiausing the linear relationship

INR(j) = Ina®—dIn2?,
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where RJ) is the sample estimate of the covariance in each scale. The wavelet estimators (OLS
and maximum likelihood) have a higher small-sample bias than the GPH estimator, but Monte-
Carlo experiments show that they have a mean-squared error that is about six times lower.

Mandelbrot and van Ness (1968) find self-similarities in fractional Brownian motions that have
been observed in physical sciences as well as in financial time series. The ability of wavelets to
dissect data into different scales makes it possible to detect these self-similar phenomena.
Vidakovic (1999, p. 14, pp. 292) gives an overview of some of the related literature.

5.4 Time-scale decompositions: the relationship between money and income

It has long been recognized that economic decision-making is dependent on the time scale
involved, and economists emphasize the importance of discerning between long-run and short-run
behaviour. Wavelets offer the possibility of going beyond this simplifying dichotomy by
decomposing a time series into several layers of orthogonal sequences of scales using Mallat’s
multiscale analysis. These scales can then be analyzed individually and compared across different
series.

Ramsey and Lampart (1998a) use this method to examine the relationship between the money
supply (M1 and M2) and output. The related literature has produced ambiguous and contradictory
results regarding the Granger causality of the two variables, a fact that has been attributed to
structural breaks and possible non-linearities. Ramsey and Lampart offer the alternative
explanation that the contradictions may well be explained by the existence of overlaying
timescale-structured relationships. To unmask these relationships, the authors use a wavelet
transform to decompose the time series into a low-frequency base scale that captures the long-run
trend and six higher-frequency levels. Here, two more interesting facets of wavelets are useful: (i)
since the base scale includes any non-stationary components, the data need not be detrended or
differenced; and (ii), the nonparametric nature of wavelets takes care of potential non-linear
relationships without losing detail. Applying causality tests to the decomposed series, the authors
find that, at the lowest timescales, income Granger causes money, but at business-cycle periods,
money Granger causes income. At the highest scales, the Granger causality goes in both
directions, suggesting some form of feedback mechanism. These results make intuitive sense and
also explain why there are ambiguous causal relationships when timescales are aggregated.

A second important finding is that the causal relationship between different variables is non-
stationary even along individual scales, since the two series are moving into and out of phase with
each other. To explain these phase shifts and to differentiate them from structural breaks will be a
further challenge for theoretical and applied researchers.
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In a companion paper, Ramsey and Lampart (1998b) analyze the relationship between
consumption and income at different timescales. As predicted by theory, they find that the slope
coefficient relating consumption and income declines with scale.

5.5 Forecasting

Arifio (1998) and Arifio, Pedro, and Vidakovic (1995) describe a very simple approach for
forecasting time series using wavelets. First, the time series is decomposed into different scales
using the wavelet transform. Arifio shows that, by adding up the squared coefficients within each
level, one can measure the energy content of each scale, similar to the power spectral density used
in Fourier analysis. Using the properties of the multiscale analysis, the time series is then
decomposed into two separate series. Each individual is then fitted using an ARIMA model and
the aggregate forecast is obtained by adding up the individual forecasts. Arifio shows that his
forecasts are preferable to a standard Box and Jenkins approach, but does not discuss the
distributional properties of his forecast. A useful first step would be to test the wavelet estimator
against other estimators using a Monte Carlo simulation.

A second field of application is the use of wavelets in connection with neural networks. Recently,
wavelet networks have gained wide acceptance in physics, engineering, and biological research,;
however, their use for forecasting economic time series has been limited so far. Aussem and
Murtagh (1997) and Aussem, Campbell, and Murtagh (1998) can find an improvement in the
prediction of sunspots and the S&P 500 index. Similar to Arifio’s approach, the time series is first
decomposed into different scales. Each scale is then used to train a dynamic recurrent neural
network and the individual forecasts are added up to obtain the combined forecast. Since neural
networks need a lot of variation to extract information, only scales with a relatively high
frequency can be used.

The main benefit of wavelets in forecasting appears to be their ability to reveal features in the
individual scales that are dampened by the overlapping scales. It is therefore easier for ARIMA
models or neural networks to extract periodic information in the individual scales.

0. Conclusions

Wavelets open a large, unexplored territory to applied economic researchers that can be roughly
decomposed into three areas. The first area covers research that is related to Fourier and frequency
analysis. While the Fourier transform maps from the time domain into the frequency domain, the
wavelet transform decomposes a time series into a set of different scales, each of which can be
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loosely associated with a range of frequencies. The second area exploits several useful features of
wavelets to improve statistical inference. These features are the ability to localize a function in
both time and scale, to deal with non-linear and non-stationary environments, and to compress the
energy content of a signal. The third area directly addresses the dissection of data into separate
layers or scales. From a theoretical viewpoint, this is of special interest, since economic decisions
and actions take place at different timescales that overlap. For forecasting purposes, there is
evidence that the individual scales provide the forecasting mechanism (e.g., an ARIMA model or
an artificial neural network) with more detailed information than the aggregate signal.

All three areas leave ample room for future research. For example, evidence for the improvement
of forecasts by decomposing the time series is largely anecdotal and based on individual
examples. A next step would be to calculate small sample properties and asymptotic distributions.
The fact that wavelet transforms disbalance the energy of a signal could be used to construct more
powerful tests; for example, for structural breaks or unit roots. A lot of statistical techniques, such
as wavelet shrinkage estimators, that have been worked out and applied in biometrics and
engineering could be applied to econometrics.

7. Howto Get Started

There are a couple of easy and intuitive primers on wavelet theory; for example, Graps (1995) and
Vidakovic and Mueller (1994). Vidakovic (1999) provides a more complete and technical, but
accessible, treatment.

Most researchers use either MatLab or S-Plus to model wavelets. Both platforms offer
commercial wavelet toolboxes as well as free add-ons. The examples and graphs used in this
survey were made using Ojanen’s (1998) WaveKit toolbox for Mativalw(math.rutgers.edu/
~ojanen/wavekjt Another free MatLab toolbox is WavelLab, developed by Donoho et al. (1999)
at Stanford\yww-stat.stanford.edu/~wavelabVavelLab has a very large set of commands and
includes datasets and educational add-ons.

A good link to the newest developments and new publications in wavelet research is
www.wavelet.org



30

Bibliography

Arifio, M.A. 1998. “Forecasting Time Series via Discrete Wavelet Transform.” Unpublished man-
uscript.

Ariflo, M.A., M. Pedro, and B. Vidakovic. 1995. “Wavelet Scalograms and Their Application in
Economic Time Series.” Institute of Statistics and Decision Sciences, Duke University,
Discussion Paper No. 94-13.

Aussem, A., J. Campbell, and F. Murtagh. 1998. “Wavelet-Based Feature Extraction and Decom-
position Strategies for Financial Forecastingplrnal of Computational Intelligence in
Finance(March/April): 5-12.

Aussem, A. and F. Murtagh. 1997. “Combining Neural Network Forecasts on Wavelet-Trans-
formed Time SeriesConnection Scienc®(1): 113-21.

Conway, P. and D. Frame. 2000. “A Spectral Analysis of New Zealand Output Gaps Using Fourier
and Wavelet Techniques.” Reserve Bank of New Zealand Discussion Paper No. 2000/06.

Daubechies, I. 1988. “Orthonormal Bases of Compactly Supported Wav€letsthunications
on Pure and Applied Mathematid4: 909-96.

. 1992.Ten Lectures on WaveletBociety for Industrial and Applied Mathematics.

Davison, R., W.C. Labys, and J.-B. Lesourd. 1998. “Wavelet Analysis of Commodity Price
Behavior.”Journal of Computational Economi¢4: 103-28.

Donoho, D.L. and I.M. Johnstone. 1994. “Ideal Spatial Adaptation via Wavelet ShrinBage.”
metrica81: 425-55.

Donoho, D.L. et al. 199%VavelLab Stanford University, Department of Statistics. <URL: http://
www-stat.stanford.edu/~wavelab>.

Gao, H.-Y. 1993. “Wavelet Estimation of Spectral Densities in Time Series Analysis.” PhD Dis-
sertation, Department of Statistics, University of California, Berkeley.

. 1997. “Wavelet Shrinkage Estimates for Heteroscedastic Regression Models.” Unpub-
lished manuscript, MathSoft, Inc.

Geweke, J. and S. Porter-Hudak. 1983. “The Estimation and Application of Long Memory Time
Series Models.Journal of Time Series Analyls221-38.

Graps, A. 1995. “An Introduction to Wavelet#EE Computational Science and Engineering
2(2): 50-61.

Hernandez, E. and G.L. Weiss. 1996. “A First Course on Wavelets.” CRC, Boca Raton.

Hong, Y. 1999. “One-Sided Testing for ARCH Effect Using Wavelets.” PhD thesis, Cornell Uni-
versity.

Hurst, H.E. 1951. “Long-Term Storage Capacity of Reservadirafisactions of the American
Society of Civil Engineers16: 770-99.



31

Jensen, M.J. 1999. “Using Wavelets to Obtain a Consistent Ordinary Least Squares Estimator of
the Long-Memory Parametedbdurnal of Forecastind.8: 17-32.

. 2000. “An Alternative Maximum Likelihood Estimator of Long-Memory Processes
using Compactly Supported Waveletddurnal of Economic Dynamics & Contrdi:
361-87.

Lapenta, E.S., S.M. Abecasis, and C.A. Heras. 2000. “Discrete Wavelet Transforms for the Treat-
ment of Financial Time Series.” Unpublished manuscript. <URL.: http://
www.sarabel@infovia.com.ar>.

Mallat, S. 1989. “A Theory for Multiresolution Signal Decomposition: The Wavelet Representa-
tion.” IEEE Transactions on Pattern Analysis and Machine Intelligdric&74—-93.

Mallat, S. and Z. Zhang. 1993. “Matching Pursuits with Time-Frequency DictiondB&E’
Transactions on Signal Processiigecember): Vol. 41, No. 12.

Mandelbrot, B.B. and J.W. van Ness. 1968. “Fractional Brownian Motions, Fractional Noises and
Applications.”SIAM Reviewl0(4): 422-37.

McCoy, E.J. and A.T. Walden. 1996. “Wavelet Analysis and Synthesis of Stationary Long-Mem-
ory ProcessesJournal of Computational and Graphical Statisti(d): 26-56.

Nason, G.P. and R. von Sachs. 1999. “Wavelets in Time Series AndislsSophical Transac-
tions of the Royal Society London, Series A: Mathematical, Physical and Engineering Sci-
ences357: 2511-26.

Neumann, M.H. 1996. “Spectral Density Estimation via Nonlinear Wavelet Methods for Station-
ary Non-Gaussian Time Seriegdurnal of Time Series Analysig: 601-33.

Ojanen, H. 1998WAVEKIT: A Wavelet Toolbox for Matlalbepartment of Mathematics, Rutgers
University.

Percival, D.B. and A.T. Walden. 2000avelet Methods for Time Series Analylliew York:
Cambridge University Press.

Priestley, M. 1996. “Wavelets and Time-Dependent Spectral Analysisthal of Time Series
Analysisl7: 85-103.

Ramsey, J.B. 1996. “The Contribution of Wavelets to the Analysis of Economic and Financial
Data.” Unpublished manuscript.

Ramsey, J.B. and C. Lampart. 1998a. “Decomposition of Economic Relationships by Timescale
Using Wavelets.Macroeconomic Dynamic(1): 49-71.

. 1998b. “The Decomposition of Economic Relationships by Time Scale using Wavelets:
Expenditure and IncomeStudies in Nonlinear Dynamics and EconometBily): 23—42.

Ramsey, J.B., D. Usikov, and G.M. Zaslavskiy. 1995. “An Analysis of U.S. Stock Price Behaviour
Using Wavelets.Fractals 3(2): 377-89.

Ramsey, J.B. and Z. Zhang. 1997. “The Analysis of Foreign Exchange Data using Waveform Dic-
tionaries.”Journal of Empirical Financd: 341-72.



32

Sachs, R. von and B. MacGibbon. 2000. “Non-Parametric Curve Estimation by Wavelet Thresh-
olding with Locally Stationary ErrorsScandinavian Journal of Statisti2g: 475-99.

Sachs, R. von and M. Neumann. 2000. “A Wavelet-Based Test for Stationkmitgrial of Time
Series Analysigl: 597-613.

Spokoiny, V.G. 1996. “Adaptive Hypothesis Testing using Wavel&ts’ Annals of Statistics
24(6): 2477-98.

Strang, G. 1993. “Wavelet Transforms versus Fourier TransfoBu#étin (new series) of the
American Mathematical Socie®8(2): 288—305.

Strichartz, R.S. 1993. “How to Make Wavelet&rherican Mathematical Month,00: 539-56.

Tkacz, G. 2000. “Estimating the Fractional Order of Integration of Interest Rates Using a Wavelet
OLS Estimator.’Studies in Nonlinear Dynamics and EconometBic$9-32.

Vidakovic, B. 1999 Statistical Modeling by Waveletdew York: John Wiley and Sons.

Vidakovic, B. and P. Mueller. 1994. “Wavelets for Kids, A Tutorial Introduction.” Institute of Sta-
tistics and Decision Sciences, Duke University, Discussion Paper No. 95-21.

Whitcher, B.J. 1998. “Assessing Nonstationary Time Series Using Wavelets.” PhD dissertation,
Department of Statistics, University of Washington.



Bank of Canada Working Papers

Documents de travail de la Banque du Canada

Working papers are generally published in the language of the author, with an abstract in both official
languagesles documents de travail sont publiés généralement dans la langue utilisée par les auteurs; ils sont
cependant précédés d'un résumé bilingue

2002
2002-2 Asset Allocation Using Extreme Value Theory Y. Bensalah
2002-1 Taylor Rules in the Quarterly Projection Model J. Armour, B. Fung, and D. Maclean
2001
2001-27 The Monetary Transmission Mechanism at the Sectoral Level J. Farés and G. Srour
2001-26 An Estimated Canadian DSGE Model with

Nominal and Real Rigidities A. Dib
2001-25 New Phillips Curve with Alternative Marginal Cost Measures

for Canada, the United States, and the Euro Area E. Gagnon and H. Khan
2001-24 Price-Level versus Inflation Targeting in a Small Open Economy G. Srour
2001-23 Modelling Mortgage Rate Changes with a

Smooth Transition Error-Correction Model Y. Liu
2001-22 On Inflation and the Persistence of Shocks to Output M. Kichian and R. Luger
2001-21 A Consistent Bootstrap Test for Conditional Density

Functions with Time-Dependent Data F. Li and G. Tkacz
2001-20 The Resolution of International Financial Crises:

Private Finance and Public Funds A. Haldane and M. Kruger
2001-19 Employment Effects of Restructuring in the Public

Sector in North America P. Fenton, I. Ip, and G. Wright
2001-18 Evaluating Factor Models: An Application to

Forecasting Inflation in Canada M.-A. Gosselin and G. Tkacz
2001-17 Why Do Central Banks Smooth Interest Rates? G. Srour
2001-16 Implications of Uncertainty about Long-Run

Inflation and the Price Level G. Stuber
2001-15 Affine Term-Structure Models: Theory and Implementation D.J. Bolder
2001-14 Leffet de la richesse sur la consommation aux Etats-Unis Y. Desnhoyers

Copies and a complete list of working papers are available from:
Pour obtenir des exemplaires et une liste compléte des documents de travail, priere de s’adresser a

Publications Distribution, Bank of Canada Diffusion des publications, Banque du Canada
234 Wellington Street, Ottawa, Ontario K1A 0G9 234, rue Wellington, Ottawa (Ontario) K1A 0G9
E-mail: publications@bankofcanada.ca Adresse électronique : publications@banqueducanada.ca

Web site: http://www.bankofcanada.ca Site Web : http://www.banqueducanada.ca



	Working Paper 2002-3 / Document de travail 2002-3
	An Introduction to Wavelets for Economists
	by
	Christoph Schleicher
	Bank of Canada Working Paper 2002-3
	January 2002

	An Introduction to Wavelets for Economists
	by
	Christoph Schleicher
	Monetary and Financial Analysis Department
	Bank of Canada
	Ottawa, Ontario, Canada K1A 0G9
	The views expressed in this paper are those of the author. No responsibility for them should be a...


	Contents
	Acknowledgements
	Abstract
	Résumé
	1. Introduction

	Figure 1: Time-Frequency Plane for Fourier and Wavelet Transform
	2. Wavelet Evolution
	and .

	Figure 2: The Haar Wavelet at Three Dilation Levels
	3. A Bit of Wavelet Theory
	yjk (x) = 2j/2 y(2j x - k).
	y(z) = 1 ( z Œ [0, 0.5) )
	= -1 ( z Œ [0.5, 1) ).
	.

	Figure 3: The Daubechies(4) Father and Mother Wavelet
	Figure 4: Daubechies(4) Wavelet Basis
	Figure 5: Approximation of the Doppler Function using Different Levels of Fineness
	s = [ 196, 4, 64, 4 ]’.
	3.1 Mallat’s multiscale analysis

	.
	.
	.
	.
	.
	and .
	,
	.
	w = [ d(n-1), d(n-2), ... , d(1), d(0), c(0) ] = [ Gy, GHy, GH2y, ... , GHn-1y, GHny, Hny ].

	Figure 6: Multiresolution Analysis of the Doppler Function
	Figure 7: Multiresolution Analysis of the Vector y = [ 4 -1 3 2 1 4 -2 2 ], using the Haar Wavele...
	Figure 8: Reverse Wavelet Transform
	4. Some Examples

	Figure 9: The Daubechies Family
	Figure 10: Coiflets and Biorthogonal Symmetric Wavelets
	4.1 Filtering

	Figure 11: Coiflets and Biorthogonal Symmetric Wavelets
	Figure 12: Filtering
	Figure 13: Different Thresholding Rules
	4.2 Separation of frequency levels

	Figure 14: Separation of Frequency Levels
	4.3 Disbalancing of energy

	Figure 15: Disbalancing of Energy
	4.4 Whitening of correlated signals

	Figure 16: Whitening of Correlated Signals
	5. Applications for Economists
	5.1 Frequency domain analysis
	5.2 Non-stationarity and complex functions

	,
	,
	5.3 Long-memory processes

	,
	,
	5.4 Time-scale decompositions: the relationship between money and income
	5.5 Forecasting
	6. Conclusions
	7. How to Get Started



	Bibliography
	2002
	2002-2
	2002-1

	2001
	2001-27
	2001-26
	2001-25
	2001-24
	2001-23
	2001-22
	2001-21
	2001-20
	2001-19
	2001-18
	2001-17
	2001-16
	2001-15
	2001-14


